INS/GNSS组合导航(七)-SINS的微分方程的推导

(三)中对SINS的机械编排进行了初步可行性的介绍,并未对机械编排进行原理性介绍。那么在详细介绍机械编排之前,需要先对SINS的微分方程进行详细的推导。

无论是机械编排,还是后面误差方程的建立,SINS的微分方程都是其重要的基础内容。那么本文在基于严恭敏《惯性导航》的基础上,对SINS中常见的微分方程进行推导。

(二)中对INS常用的坐标系统及转换进行了介绍,同时介绍了姿态的三种表示方法,以及三种方法之间的相互转换。

1. 姿态的三种表示方法

  • 欧拉角法
    欧拉角法对应于载体坐标系的三个旋转角(roll, pitch, yaw)
  • 方向余弦矩阵法
    方向余弦矩阵(DCM)又被称为“坐标变换矩阵”,用于将矢量投影从一个坐标系变换到另一个坐标系中。
  • 四元素法
    四元数法是指有一个实数单位1和三个虚数单位i,j,k组成并具有如下形式实元的数。

下面对姿态微分方程的推导是也是基于这三种方法进行推导。

2. 姿态微分方程推导

欧拉角微分方程

欧拉角的旋转方式有很多种,常用的是ZYX旋转。这里的旋转指的是欧拉角的定义方式上的旋转。如下图所示,即为ZYX旋转。
常见的ZYX旋转方式
上面三次旋转都对应一个坐标转换矩阵,这里分别为 R ψ R_\psi Rψ R θ R_\theta Rθ R ϕ R_\phi Rϕ。其具体形式不在这里给出,感兴趣的可以自行搜索。

欧拉角微分方程的推导就对应着上面三次旋转。
1)第一次旋转
绕原始坐标系Z轴旋转产生 ψ \psi ψ角,产生的旋转角速度在旋转后的临时坐标系1中的表示是绕Z轴方向,因此在1系中的表示为: ω ^ 1 = [ 0 0 ψ ˙ ] \hat \omega_1=\begin{bmatrix} 0 \\ 0 \\ \dot \psi\end{bmatrix} ω^1=00ψ˙
2)第二次旋转
绕中间坐标系1系Y轴旋转 θ \theta θ角,产生的旋转角速度在旋转后的临时坐标系2中的表示也是绕Y轴方向, 因此在2系中很好表示,但是旋转也改变了第一次旋转角速度的表示。因此前两次旋转在2系中的表示为: ω ^ 2 = [ 0 θ ˙ 0 ] + R θ ω ^ 1 = [ − ψ ˙ s i n θ θ ˙ ψ ˙ c o s θ ] \hat \omega_2=\begin{bmatrix} 0 \\ \dot \theta \\ 0\end{bmatrix}+R_\theta \hat \omega_1=\begin{bmatrix} -\dot \psi sin \theta \\ \dot \theta \\ \dot \psi cos \theta\end{bmatrix} ω^2=0θ˙0+Rθω^1=ψ˙sinθθ˙ψ˙cosθ
3)第三次旋转
绕中间坐标系2系的X轴旋转 ϕ \phi ϕ角,产生的旋转角速度在旋转后的最终坐标系中的表示也是绕X轴方向,但是同样改变了前两次旋转角速度的表示,三次旋转在最终坐标系中的表示为: ω ^ b = [ ϕ ˙ 0 0 ] + R ϕ ω ^ 2 = [ 1 0 − s i n θ 0 c o s ϕ s i n ϕ c o s θ 0 − s i n ϕ c o s ϕ c o s θ ] [ ϕ ˙ θ ˙ ψ ˙ ] \hat \omega_b=\begin{bmatrix} \dot \phi \\ 0 \\ 0\end{bmatrix}+R_\phi \hat \omega_2=\begin{bmatrix} 1&0&-sin\theta \\ 0&cos\phi&sin\phi cos\theta \\ 0 & -sin\phi & cos\phi cos\theta \end{bmatrix}\begin{bmatrix} \dot \phi \\ \dot \theta \\ \dot \psi\end{bmatrix} ω^b=ϕ˙00+Rϕω^2=1000cosϕsinϕsinθsinϕcosθcosϕcosθϕ˙θ˙ψ˙
ω ^ b = [ 1 0 − s i n θ 0 c o s ϕ s i n ϕ c o s θ 0 − s i n ϕ c o s ϕ c o s θ ] [ ϕ ˙ θ ˙ ψ ˙ ] \hat \omega_b=\begin{bmatrix} 1&0&-sin\theta \\ 0&cos\phi&sin\phi cos\theta \\ 0 & -sin\phi & cos\phi cos\theta \end{bmatrix}\begin{bmatrix} \dot \phi \\ \dot \theta \\ \dot \psi\end{bmatrix} ω^b=1000cosϕsinϕsinθsinϕcosθcosϕcosθϕ˙θ˙ψ˙
其中 ω ^ b = [ ω n b , x b ω n b , y b ω n b , z b ] \hat \omega_b =\begin{bmatrix}\omega^b_{nb,x} \\ \omega^b_{nb,y} \\ \omega^b_{nb,z} \end{bmatrix} ω^b=ωnb,xbωnb,ybωnb,zb
对矩阵求逆即可得到欧拉角微分方程。欧拉角微分方程在惯导和组合导航中用的不多。
方向余弦矩阵微分方程
欧拉角和DCM之间是可以相互转换的。上述欧拉角三次旋转是对应的旋转矩阵相乘就是DCM。即 R n b = R ψ ⋅ R θ ⋅ R ϕ = [ c o s θ c o s ψ − c o s ϕ s i n ψ + s i n ϕ s i n θ c o s ψ s i n ϕ s i n ψ + c o s ϕ s i n θ c o s ψ c o s θ s i n ψ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值