GNSS精密单点定位(PPP)基本原理

本文深入探讨了全球导航卫星系统(GNSS)的精密单点定位(PPP)技术,包括PPP的背景、基本算法、无电离层组合模型、UoFc模型和非差非组合模型的比较。文章详细阐述了PPP中的模糊度固定方法,如FCB的估计和无电离层组合模糊度的恢复。此外,还介绍了几个开源PPP软件和相关论文推荐,为初学者提供了宝贵的资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文旨在对GNSS的PPP技术进行原理性总结。并对PPP涉及的一些细节进行了详细的叙述,相当于一个综述性文章。希望对初入GNSS的小白有所帮助。

1 背景

精密单点定位技术(Precise Point Positioning,PPP)是上世纪九十年代末期发展起来的一种绝对定位技术。在PPP之前,绝对定位家族里大都靠SPP去维持其发展。SPP就是标准单点定位技术,也称为伪距单点定位技术。其基本定位原理也是基于最小二乘,但是不涉及载波相位观测值,因此无需考虑模糊度固定的问题。但是伪距观测值的噪声很大,所以定位精度不是很高。而载波相位观测值的噪声小,相对于伪距观测值有先天性的优势。随着PPP技术的提出,从刚开始的PPP浮点解到现如今的PPP固定解,PPP技术带来了GNSS历史上的一次技术革命。PPP技术利用高精度的载波相位观测值与伪距观测值以及一系列精密产品,便可完成单台接收机的高精度定位。就目前来说,PPP技术已经相对成熟,但是仍然具有如快速模糊度固定算法、实时动态PPP等方面的挑战。

2 PPP基本算法/原理

PPP基本数学模型基于对电离层延迟的处理,可以按照不同的组合方式构建以下几种的PPP模型。

2.1 无电离层组合模型

无电离层组合模型利用不同频率信号间的组合消除电离层延迟的低阶项。也是目前双频、三频信号最常用的组合方式。其数学模型如下:
P I F = f 1 2 f 1 2 − F 2 2 P 1 + − f 2 2 f 1 2 − f 2 2 P 2 P_{IF}=\frac{ {f_1}^2}{ {f_1}^2-{F_2}^2}P_1+\frac{-{f_2}^2}{ {f_1}^2-{f_2}^2}P_2 PIF=f12F22f12P1+f12f22f22P2
L I F = f 1 2 f 1 2 − F 2 2 L 1 + − f 2 2 f 1 2 − f 2 2 L 2 L_{IF}=\frac{ {f_1}^2}{ {f_1}^2-{F_2}^2}L_1+\frac{-{f_2}^2}{ {f_1}^2-{f_2}^2}L_2 LIF=f12

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值