ELM数据处理和调参经历 调参方法

本文探讨了提升机器学习模型准确性的八个有效方法,包括增加数据量、处理缺失值与异常值、特征工程、特征选择、尝试多种算法、参数调优、集成方法及交叉验证。特别关注了极端学习机的参数调整技巧,如使用Butterworth滤波器处理噪声,以及遗传算法在PM2.5浓度预测中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

After I build the ELM model(class), I should find the best result for my data.
The most important thing to do is to process my data and find suitable parameters for my model.

Butterworth Filter

I use Butterworth Filter to filter my noise torque from the robot.
One important parameter is cutoff frequency.
too big -> overfitting
too small -> too smooth

Because only torque of joint 1 is always bigger than 40, my idea is that cutoff freq of joint 1 can be bigger than other joints.
I will get it in range cf = [1, 10].
Application of the Butterworth Filter can read my artical : Butterworth Filter 巴特沃斯滤波器的python代码应用

Some function of tuning the parameters from internet

if you want to get better training accuracy in basic SLFN trained by ELM you should do this:
1- increase the number of neurons one by one using incremental ELM until the networks give a stable accuracy
2- after that you can change the formula of beta “B=pinv(H)*T” to this one
(B=(inv((I/C)+H’*H)*H’*T);
where I is the identity matrix you can type "help eye " in Matlab;
and try yo make your hidden layers as a squared matrix.
and after that, you can increase your regularization parameter C incrementally until you get the minimum training error.

That means, firstly you should search L, and then search lambda.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值