【时间序列分析】15. 非决定性平稳序列

非决定性平稳序列

非决定性平稳序列

对平稳序列,我们常常考虑用所有的历史信息 { X t : t ≤ n } \{X_t:t\leq n\} {Xt:tn} X n + 1 X_{n+1} Xn+1 进行最佳线性预测。根据能否做出精准预测,我们可以将平稳序列分为两种:当预测误差为零时, X n + 1 X_{n+1} Xn+1 的信息完全含在历史资料中,这样的平稳序列被称为决定性平稳序列;当预测误差不为零时,说明 X n + 1 X_{n+1} Xn+1 的信息不完全含在历史信息的线性组合及其极限完全确定,这样的平稳序列被称为非决定性平稳序列。首先我们先定义历史信息及其预测误差。

{ X n : n ∈ Z } \{X_n:n\in\Z\} {Xn:nZ} 是零均值平稳序列,将我们可以获得 m m m 期滞后的历史信息记为
X n , m = ( X n , X n − 1 , ⋯   , X n + 1 − m ) T   , \boldsymbol{X}_{n,m}=(X_n,X_{n-1},\cdots,X_{n+1-m})^{\rm T}\ , Xn,m=(Xn,Xn1,,Xn+1m)T ,
m → ∞ m\to\infty m 时该向量即可表示所有历史信息。

定义
X ^ n + 1 , m = L ( X n + 1 ∣ X n , m )   , \hat{X}_{n+1,m}=L(X_{n+1}|\boldsymbol{X}_{n,m})\ , X^n+1,m=L(Xn+1Xn,m) ,

σ 1 , m 2 = E ( X n + 1 − X ^ n + 1 , m ) 2 \sigma^2_{1,m}={\rm E}(X_{n+1}-\hat{X}_{n+1,m})^2 σ1,m2=E(Xn+1X^n+1,m)2

我们知道随着历史信息增多,预测的效果不会更差,因此预测误差 σ 1 , m 2 \sigma^2_{1,m} σ1,m2 m m m 的单调递减函数。如果我们想要表示用所有历史信息的预测误差,只需求极限
σ 1 2 = lim ⁡ m → ∞ σ 1 , m 2 = lim ⁡ m → ∞ E ( X n + 1 − X ^ n + 1 , m ) 2 < ∞   , \sigma_1^2=\lim_{m\to\infty}\sigma_{1,m}^2=\lim_{m\to\infty}{\rm E}(X_{n+1}-\hat{X}_{n+1,m})^2<\infty \ , σ12=mlimσ1,m2=mlimE(Xn+1X^n+1,m)2< ,
并且有定理证明该极限与 n n n 无关。

下面我们引入平稳序列的决定性的定义。

先重述一下之前定义的几个量:
σ 1 , m 2 = E ( X n + 1 − X ^ n + 1 , m ) 2 \sigma^2_{1,m}={\rm E}(X_{n+1}-\hat{X}_{n+1,m})^2 σ1,m2=E(Xn+1X^n+1,m)2
称为用 m m m 个历史信息对下一个时间点进行预测的均方误差,
σ 1 2 = lim ⁡ m → ∞ σ 1 , m 2 = lim ⁡ m → ∞ E ( X n + 1 − X ^ n + 1 , m ) 2 \sigma_1^2=\lim_{m\to\infty}\sigma_{1,m}^2=\lim_{m\to\infty}{\rm E}(X_{n+1}-\hat{X}_{n+1,m})^2 σ12=mlimσ1,m2=mlimE(Xn+1X^n+1,m)2
称为用全部历史信息对下一个时间点进行预测的均方误差,即一步预测的均方误差

平稳序列的决定性的定义:

(1) 如果 σ 1 2 = 0 \sigma_1^2=0 σ12=0 ,称 { X t } \{X_t\} {Xt} 是决定性平稳序列;

(2) 如果 σ 1 2 > 0 \sigma_1^2>0 σ12>0 ,称 { X t } \{X_t\} {Xt} 是非决定性平稳序列。

有一类特殊的决定性平稳序列,其最佳线性预测为可完全线性预测,其满足以下性质:

设平稳序列 { X t } \{X_t\} {Xt} n + 1 n+1 n+1 阶自协方差矩阵 Γ n + 1 \boldsymbol{\Gamma}_{n+1} Γn+1 退化, ∣ Γ n ∣ > 0 |\boldsymbol\Gamma_n|>0 Γn>0 ,则 X 1 , X 2 , ⋯   , X n , X n + 1 X_1,X_2,\cdots,X_n,X_{n+1} X1,X2,,Xn,Xn+1 线性相关,所以 X n + 1 X_{n+1} Xn+1 可以由 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 线性表示,于是 L ( X n + 1 ∣ X n , X n − 1 , ⋯   , X 1 ) = X n + 1 L(X_{n+1}|X_n,X_{n-1},\cdots,X_1)=X_{n+1} L(Xn+1Xn,Xn1,,X1)=Xn+1 ,当 m ≥ n m\geq n mn 时,
L ( X n + 1 ∣ X n , X n − 1 , ⋯   , X n − m + 1 ) = X n + 1   , L(X_{n+1}|X_n,X_{n-1},\cdots,X_{n-m+1})=X_{n+1}\ , L(Xn+1Xn,Xn1,,Xnm+1)=Xn+1 ,
即有 σ 1 , m 2 = 0 \sigma_{1,m}^2=0 σ1,m2=0 进而显然有 σ 1 2 = 0 \sigma^2_1=0 σ12=0 { X t } \{X_t\} {Xt} 是决定性平稳序列。

纯非决定性平稳序列

决定性与非决定性取决于平稳序列的一步预测的均方误差是否为零,那么接下来我们继续延伸到 k k k 步预测。

对于非决定性序列,用 X n , m \boldsymbol{X}_{n,m} Xn,m 预测 X n + k X_{n+k} Xn+k 的误差会随 k k k 的增大而增大,同理定义
σ k , m 2 = E [ X n + k − L ( X n + k ∣ X n , X n − 1 , ⋯   , X n − m + 1 ) ] 2   , \sigma_{k,m}^2={\rm E}\left[X_{n+k}-L(X_{n+k}|X_n,X_{n-1},\cdots,X_{n-m+1})\right]^2\ , σk,m2=E[Xn+kL(Xn+kXn,Xn1,,Xnm+1)]2 ,
σ k , m 2 \sigma^2_{k,m} σk,m2 也是 m m m 的单调递减函数,与 n n n 无关。

定义 k k k 步预测的均方误差如下:
σ k 2 = lim ⁡ m → ∞ σ k , m 2 = lim ⁡ m → ∞ E [ X n + k − L ( X n + k ∣ X n , m ) ] 2 \sigma^2_k=\lim_{m\to\infty}\sigma_{k,m}^2=\lim_{m\to\infty}{\rm E}\left[X_{n+k}-L(X_{n+k}|\boldsymbol{X}_{n,m})\right]^2 σk2=mlimσk,m2=mlimE[Xn+kL(Xn+kXn,m)]2

考虑用充分多的历史信息对未来 X n + k X_{n+k} Xn+k 进行预测时, k k k 越大说明预测信息和被预测信息的时间间隔越长,预测的误差就越大。用 { σ k 2 } \{\sigma_k^2\} {σk2} 序列来表示,即为 σ k 2 ≥ σ k − 1 2 \sigma_k^2\geq\sigma^2_{k-1} σk2σk12 。这一性质通过如下过程即可验证:

σ k 2 = lim ⁡ m → ∞ E [ X n + k − L ( X n + k ∣ X n , X n − 1 , ⋯   , X n − m + 1 ) ] 2 = lim ⁡ m → ∞ E [ X n + k − 1 − L ( X n + k − 1 ∣ X n − 1 , X n − 2 , ⋯   , X n − m ) ] 2 ≥ lim ⁡ m → ∞ E [ X n + k − 1 − L ( X n + k − 1 ∣ X n , X n − 1 , ⋯   , X n − m ) ] 2 = σ k − 1 2 \begin{aligned} \sigma_k^2 &= \lim_{m\to\infty}{\rm E}\left[X_{n+k}-L(X_{n+k}|X_n,X_{n-1},\cdots,X_{n-m+1})\right]^2 \\ &= \lim_{m\to\infty}{\rm E}\left[X_{n+k-1}-L(X_{n+k-1}|X_{n-1},X_{n-2},\cdots,X_{n-m})\right]^2 \\ &\geq \lim_{m\to\infty}{\rm E}\left[X_{n+k-1}-L(X_{n+k-1}|X_{n},X_{n-1},\cdots,X_{n-m})\right]^2 \\ &=\sigma_{k-1}^2 \end{aligned} σk2=mlimE[Xn+kL(Xn+kXn,Xn1,,Xnm+1)]2=mlimE[Xn+k1L(Xn+k1Xn1,Xn2,,Xnm)]2mlimE[Xn+k1L(Xn+k1Xn,Xn1,,Xnm)]2=σk12

由此说明 σ k 2 \sigma_k^2 σk2 k k k 的单调不减函数,但要注意 σ k , m 2 \sigma_{k,m}^2 σk,m2 k k k 没有确定的函数单调性。下面我们考虑 { σ k 2 } \{\sigma_k^2\} {σk2} 的上限,由于
σ k 2 ≤ E ( X n + k − 0 ) 2 = γ 0 \sigma_k^2\leq{\rm E}(X_{n+k}-0)^2=\gamma_0 σk2E(Xn+k0)2=γ0
所以根据单调收敛定理, { σ k 2 } \{\sigma_k^2\} {σk2} 序列单调递增且有上界因此必有极限。当 k → ∞ k\to\infty k 时,如果 σ k 2 → γ 0 \sigma_k^2\to\gamma_0 σk2γ0 ,这说明用充分多的历史信息对遥远的将来进行预测根本没什么效果。引入纯非决定性序列的相关定义。

设 ${X_t} 是非决定性的平稳序列,如果
lim ⁡ k → ∞ σ k 2 = γ 0   , \lim_{k\to\infty}\sigma_k^2=\gamma_0 \ , klimσk2=γ0 ,
就称 { X t } \{X_t\} {Xt}纯非决定性平稳序列

事实上,对于纯非决定性平稳序列,有如下的结果:
lim ⁡ k → ∞ lim ⁡ m → ∞ E [ L ( X n + k ∣ X n , X n − 1 , ⋯   , X n − m + 1 ) ] 2 = 0 \lim_{k\to\infty}\lim_{m\to\infty}{\rm E}[L(X_{n+k}|X_n,X_{n-1},\cdots,X_{n-m+1})]^2=0 klimmlimE[L(Xn+kXn,Xn1,,Xnm+1)]2=0

这说明用纯非决定性平稳序列做长期或超长期预测是不合适的。

这一结果的证明如下:

X ^ n + k , m = L ( X n + k ∣ X n , X n − 1 , ⋯   , X n − m + 1 ) \hat{X}_{n+k,m}=L(X_{n+k}|X_n,X_{n-1},\cdots,X_{n-m+1}) X^n+k,m=L(Xn+kXn,Xn1,,Xnm+1) 根据正交和投影的性质(可以理解为勾股定理)有
σ k , m 2 = E ( X n + k − X ^ n + k , m ) 2 = E X n + k 2 − E X ^ n + k , m 2 \sigma_{k,m}^2={\rm E}(X_{n+k}-\hat{X}_{n+k,m})^2={\rm E}X_{n+k}^2-{\rm E}\hat{X}_{n+k,m}^2 σk,m2=E(Xn+kX^n+k,m)2=EXn+k2EX^n+k,m2
移项之后两边取双重极限得到
lim ⁡ k → ∞ lim ⁡ m → ∞ E X ^ n + k , m 2 = lim ⁡ k → ∞ lim ⁡ m → ∞ ( γ 0 − σ k , m 2 ) = γ 0 − lim ⁡ k → ∞ lim ⁡ m → ∞ σ k , m 2 = γ 0 − γ 0 = 0   . \lim_{k\to\infty}\lim_{m\to\infty}{\rm E}\hat{X}_{n+k,m}^2=\lim_{k\to\infty}\lim_{m\to\infty}\left(\gamma_0-\sigma_{k,m}^2\right)=\gamma_0-\lim_{k\to\infty}\lim_{m\to\infty}\sigma_{k,m}^2=\gamma_0-\gamma_0=0 \ . klimmlimEX^n+k,m2=klimmlim(γ0σk,m2)=γ0klimmlimσk,m2=γ0γ0=0 .
在这里插入图片描述

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值