深度学习如何实现分步训练?

在许多深度学习任务中,特别是涉及多模态数据的任务(例如视频和关键点),通常采用阶段训练策略。初步,可以对每个模态单独训练一个编码器,然后在后续阶段将它们结合起来进行联合训练。

为了在同一个框架内实现分步训练策略,可以先把各个模块集成到一个统一的模型结构,然后根据当前的任务选择性的激活或者冻结模型的某些部分。

以下为一个例子:

1.模型定义:

class UnifiedModel(nn.Module):
    def __init__(self):
    super(UnifiedModel, self).__init__()
    self.video_encoder = VideoEncoder()
    self.keypoint_encoder = KeypointEncoder()
    …

2.选择性激活、冻结

if current_task == "video_pretraining":
    #冻结keypoint encoder,只训练video encoder
    for param in model.keypoint_encoder.parameters():
        param.requires_grad = False
elif current_task == "keypoint_pretraining":
    for param in model.video_encoder.parameters():
        param.requires_grad = False

3.联合训练:将预训练好的模型进行联合训练,要确保参数都是可更新的

if current_task == "joint_training":
    for param in model.parameters():
        param.requires_grad = True

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值