题目描述
参与者需要在地图上寻找食物并获得尽可能多的食物,同时需要注意在游戏过程中所处的位置,因为不同的位置可以通过传送门到达其他位置,可能会影响食物获取的数量。
在游戏开始时,参与者会出发点选择一个方格作为起点,每个方格上至多 2 个传送门,通过传送门可将参与者传送至指定的其它方格。每个方格上都标注了三个数字:id
、parent-id
和 value
。其中:
id
代表方格的编号。parent-id
代表可以通过传送门到达该方格的方格编号。value
代表在该方格获取或失去的食物单位数。
参与者需要在地图上行进,到达每个方格并获取或失去对应的食物单位数,直到满足退出游戏的条件之一。参与者的最终得分是所获取食物单位数的总和,需要尽可能地高。
需要注意的是地图设计时保证了参与者不可能到达相同的方格两次。因此,参与者当前所处的方格无传送门,游戏将立即结束。另外,参与者在任意方格上都可以宣布退出游戏,同样会结束游戏。
请计算参与者退出游戏后,最多可以获得多少单位的食物。
输入描述
- 第一行:方块个数
N
(N ≤ 10000
)。 - 接下来
N
行,每行三个整数id
、parent-id
、value
,具体含义见题面。0 ≤ id, parent-id < N
-100 ≤ value ≤ 100
- 特殊的
parent-id
可以取-1
,表示没有任何方格可以通过传送门传送到此方格,这样的方格在地图中有且仅有一个。
输出描述
输出为一个整数,表示参与者退出游戏后最多可以获得多少单位的食物。
用例输入
样例一
输入:
7
0 1 8
1 -1 -2
2 1 9
4 0 -2
5 4 3
3 0 -3
6 2 -3
9
样例解释:
参与者从方格 0
出发,通过传送门到达方格 4
,再通过传送门到达方格 5
。一共获得 8 + (-2) + 3 = 9
个单位食物,得到食物最多。或者参与者在游戏开始时处于方格 2
,直接主动宣布退出游戏,也可以获得 9
个单位食物。
样例二
输入:
3
0 -1 3
1 0 1
2 0 2
复制
输出:
5
样例解释:
参与者从方格 0
出发,通过传送门到达方格 2
,一共可以获得 3 + 2 = 5
个单位食物,此时得到食物最多。
解题思路
-
问题分析:
- 地图中的每个方格可以看作一个节点,
parent-id
表示从哪个节点可以传送到当前节点。 - 参与者从某个起点出发,通过传送门移动到其他节点,直到无法移动或主动退出。
- 需要找到一条路径,使得路径上所有节点的
value
之和最大。
- 地图中的每个方格可以看作一个节点,
-
算法选择:
- 将地图建模为有向无环图(DAG),因为每个节点只能被访问一次。
- 使用动态规划(DFS + 记忆化)计算从每个节点出发的最大食物获取量。
-
实现步骤:
- 构建图的邻接表表示。
- 对于每个根节点(
parent-id = -1
),使用 DFS 遍历其子节点,计算从当前节点出发的最大食物获取量。 - 最终取所有节点的最大值作为结果。
代码
#include <iostream>
#include <vector>
#include <map>
#include <algorithm>
using namespace std;
int n;
map<int, vector<int>> mp; // 邻接表
int v[10005]; // 存储每个节点的 value
int dp[10005]; // 存储从每个节点出发的最大食物获取量
// DFS 计算从当前节点出发的最大食物获取量
int dfs(int root) {
if (dp[root] != -1) return dp[root]; // 记忆化
dp[root] = v[root]; // 初始值为当前节点的 value
int ans = 0;
for (int i = 0; i < mp[root].size(); i++) {
ans = max(ans, dfs(mp[root][i])); // 递归计算子节点的最大值
}
dp[root] += ans; // 更新当前节点的最大值
return dp[root];
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n;
vector<int> root; // 存储所有根节点
for (int i = 0; i < n; i++) {
int id, f, t;
cin >> id >> f >> t;
v[id] = t; // 记录当前节点的 value
if (f != -1) {
mp[f].push_back(id); // 构建邻接表
} else {
root.push_back(id); // 记录根节点
}
}
// 初始化 dp 数组
fill(dp, dp + n, -1);
// 对每个根节点进行 DFS
for (int i = 0; i < root.size(); i++) {
dfs(root[i]);
}
// 找到最大值
int res = -1000;
for (int i = 0; i < n; i++) {
res = max(res, dp[i]);
}
cout << res;
return 0;
}