机试题——获取最多食物

题目描述

参与者需要在地图上寻找食物并获得尽可能多的食物,同时需要注意在游戏过程中所处的位置,因为不同的位置可以通过传送门到达其他位置,可能会影响食物获取的数量。

在游戏开始时,参与者会出发点选择一个方格作为起点,每个方格上至多 2 个传送门,通过传送门可将参与者传送至指定的其它方格。每个方格上都标注了三个数字:idparent-idvalue。其中:

  • id 代表方格的编号。
  • parent-id 代表可以通过传送门到达该方格的方格编号。
  • value 代表在该方格获取或失去的食物单位数。

参与者需要在地图上行进,到达每个方格并获取或失去对应的食物单位数,直到满足退出游戏的条件之一。参与者的最终得分是所获取食物单位数的总和,需要尽可能地高。

需要注意的是地图设计时保证了参与者不可能到达相同的方格两次。因此,参与者当前所处的方格无传送门,游戏将立即结束。另外,参与者在任意方格上都可以宣布退出游戏,同样会结束游戏。

请计算参与者退出游戏后,最多可以获得多少单位的食物。


输入描述

  • 第一行:方块个数 NN ≤ 10000)。
  • 接下来 N 行,每行三个整数 idparent-idvalue,具体含义见题面。
    • 0 ≤ id, parent-id < N
    • -100 ≤ value ≤ 100
    • 特殊的 parent-id 可以取 -1,表示没有任何方格可以通过传送门传送到此方格,这样的方格在地图中有且仅有一个。

输出描述

输出为一个整数,表示参与者退出游戏后最多可以获得多少单位的食物。


用例输入

样例一

输入:

7
0 1 8
1 -1 -2
2 1 9
4 0 -2
5 4 3
3 0 -3
6 2 -3
9

样例解释
参与者从方格 0 出发,通过传送门到达方格 4,再通过传送门到达方格 5。一共获得 8 + (-2) + 3 = 9 个单位食物,得到食物最多。或者参与者在游戏开始时处于方格 2,直接主动宣布退出游戏,也可以获得 9 个单位食物。

样例二

输入:

3
0 -1 3
1 0 1
2 0 2

复制

输出:

5

样例解释
参与者从方格 0 出发,通过传送门到达方格 2,一共可以获得 3 + 2 = 5 个单位食物,此时得到食物最多。


解题思路

  1. 问题分析

    • 地图中的每个方格可以看作一个节点,parent-id 表示从哪个节点可以传送到当前节点。
    • 参与者从某个起点出发,通过传送门移动到其他节点,直到无法移动或主动退出。
    • 需要找到一条路径,使得路径上所有节点的 value 之和最大。
  2. 算法选择

    • 将地图建模为有向无环图(DAG),因为每个节点只能被访问一次。
    • 使用动态规划(DFS + 记忆化)计算从每个节点出发的最大食物获取量。
  3. 实现步骤

    • 构建图的邻接表表示。
    • 对于每个根节点(parent-id = -1),使用 DFS 遍历其子节点,计算从当前节点出发的最大食物获取量。
    • 最终取所有节点的最大值作为结果。

代码

#include <iostream>
#include <vector>
#include <map>
#include <algorithm>
using namespace std;

int n;
map<int, vector<int>> mp; // 邻接表
int v[10005];             // 存储每个节点的 value
int dp[10005];            // 存储从每个节点出发的最大食物获取量

// DFS 计算从当前节点出发的最大食物获取量
int dfs(int root) {
    if (dp[root] != -1) return dp[root]; // 记忆化
    dp[root] = v[root]; // 初始值为当前节点的 value
    int ans = 0;
    for (int i = 0; i < mp[root].size(); i++) {
        ans = max(ans, dfs(mp[root][i])); // 递归计算子节点的最大值
    }
    dp[root] += ans; // 更新当前节点的最大值
    return dp[root];
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    cin >> n;
    vector<int> root; // 存储所有根节点
    for (int i = 0; i < n; i++) {
        int id, f, t;
        cin >> id >> f >> t;
        v[id] = t; // 记录当前节点的 value
        if (f != -1) {
            mp[f].push_back(id); // 构建邻接表
        } else {
            root.push_back(id); // 记录根节点
        }
    }

    // 初始化 dp 数组
    fill(dp, dp + n, -1);

    // 对每个根节点进行 DFS
    for (int i = 0; i < root.size(); i++) {
        dfs(root[i]);
    }

    // 找到最大值
    int res = -1000;
    for (int i = 0; i < n; i++) {
        res = max(res, dp[i]);
    }

    cout << res;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值