机器人SLAM与自主导航(一)——理论基础
目录
总述
SLAM可以描述为:机器人在未知的环境中从一个未知位置开始移动,移动过程中根据位置估计和地图进行自身定位,同时建造增量式地图,实现机器人的自主定位和导航。
想象一个盲人在一个未知的环境里,如果想感知周围的大概情况,那么他需要伸展双手作为他的“传感器”,不断探索四周是否有障碍物。当然这个“传感器”有量程范围,他还需要不断移动,同时在心中整合已知感知到的信息。当感觉新探索的环境好像是之前遇到过的某个位置,他就会校正心中整合好的地图,同时也会校正自己当前所处的位置。当然,作为一个盲人,感知能力有限,所以他探索的环境信息会存在误差,而且他会根据自己的确定程度为探索到的障碍物设置一个概率值,概率值越大,表示这里有障碍物的可能性越大。一个盲人探索未知环境的场景基本可以表示SLAM算法的主要过程。
家庭、商场、车站等场所是室内机器人的主要应用场景,在这些应用中,用户需要机器人通过移动完成某些任务,这就需要机器人具备自主移动、自主定位的功能,这类应用统称为自主导航。自主导航与SLAM密不可分,原因就在于SLAM生成的地图是机器人自主移动的主要蓝图。总结为:在服务机器人工作空间中,根据机器人自身的定位导航系统找到一个从起始状态到目标状态、可以避开障碍物的最优路径。
要完成机器人的SLAM和自主导航,机器人首先要有感知周围环境的能力,尤其要有感知周围环境深度信息的能力,因为这是探测障碍物的关键数据。用于获取深度信息的传感器主要有以下几种类型。