### 序列二次规划在MPC中的应用
#### 什么是序列二次规划(SQP)
序列二次规划是一种用于解决带有约束条件的非线性优化问题的方法。该方法通过一系列迭代逐步逼近最优解,每次迭代都构建并求解一个近似的二次规划(QP)子问题来更新当前解的位置。
对于模型预测控制(MPC),由于其本质上是一个有限时间范围内的最优化问题,因此SQP非常适合处理那些具有复杂动态特性和严格操作限制的过程控制系统[^3]。
#### 如何应用于MPC
当采用连续形式的惩罚项替代传统的不可导惩罚函数时,能够使得整个目标函数变得平滑且处处可微分。这不仅有助于提高数值稳定性,还允许利用高效的梯度信息加速收敛速度。此时,即使原问题是非凸甚至是高度非线性的,也可以借助于SQP框架下的局部搜索策略找到满意的可行方案。
具体来说,在每一步预测周期内:
- 首先根据最新的状态观测值初始化决策变量向量;
- 接着围绕这一点构造一个二阶泰勒展开式的近似表达式作为新的子问题描述;
- 更新参数估计直至满足预设精度要求为止;
```python
import numpy as np
from scipy.optimize import minimize
def sqp_mpc(x0, u_bounds, A, B, Q, R, N):
"""
使用序列二次规划实现简单的MPC控制器
参数:
x0: 初始状态向量
u_bounds: 输入边界列表 [(umin_1, umax_1), ... , (umin_nu, umax_nu)]
A,B: 系统矩阵
Q,R: 权重矩阵
N: 展望长度
返回:
optimal_u: 控制输入序列
"""
nu = len(u_bounds) # 获取输入维度数
nx = len(x0) # 获取状态空间维数
def cost_function(U_flat):
U = U_flat.reshape((N,nu))
J = 0.0
state = x0.copy()
for i in range(N):
next_state = A @ state + B @ U[i,:]
J += state.T @ Q @ state \
+ U[i].T @ R @ U[i]
state[:] = next_state[:]
return J
cons = ({'type': 'ineq',
'fun': lambda U_flat: np.array([U_flat[j]-bound[0] for j,bound in enumerate(u_bounds)])},
{'type': 'ineq',
'fun': lambda U_flat: -np.array([-U_flat[j]+bound[1] for j,bound in enumerate(u_bounds)]),
})
res = minimize(cost_function,
x0=np.zeros(nu*N),
method='SLSQP',
constraints=cons)
return res.x[:nu]
if __name__ == "__main__":
# 测试用例设置
x0_test = [1., 2.] # 初始化位置
bounds_test = ((-1., 1.), (-2., 2.)) # 控制器动作上下限定义
system_matrices = {
"A": [[1., .5],
[.1, 1.]],
"B": [[.8],
[.6]]
}
weights = {"Q":[[1., 0.],[0., 1.]],
"R":[[.1]]}
result = sqp_mpc(
x0=x0_test,
u_bounds=bounds_test,
**system_matrices,**weights,N=5)
print(f"Optimal control sequence:{result}")
```
此Python脚本展示了如何使用`scipy.optimize.minimize()`函数配合特定配置选项(`method='SLSQP'`)来进行一次基本的MPC计算实验。这里选择了简化版的一维双积分器案例进行说明,并设置了适当的状态转移方程、权重系数以及其他必要参数以便运行测试程序[^4]。