微积分-导数3(微分法则)

常见函数的导数

常量函数的导数

d d x ( c ) = 0 \frac{d}{dx}(c) = 0 dxd(c)=0
常量函数的图像是一条水平线 y = c y = c y=c,它的斜率为0,所以我们必须有 f ′ ( x ) = 0 f'(x) = 0 f(x)=0。从导数的定义来看,证明也很简单:
f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h = lim ⁡ h → 0 c − c h = lim ⁡ h → 0 0 h = 0 f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} \frac{0}{h} = 0 f(x)=h0limhf(x+h)f(x)=h0limhcc=h0limh0=0

幂函数的导数

接下来看幂函数 f ( x ) = x n f(x) = x^n f(x)=xn,其中 n n n为正整数。当 n = 1 n = 1 n=1时,函数的图像是一条直线,斜率为 1 1 1
d d x ( x ) = 1 \frac{d}{dx}(x) = 1 dxd(x)=1
n = 2 n = 2 n=2 n = 3 n = 3 n=3时,根据上一节的计算,我们得知它们的导数为
d d x ( x 2 ) = 2 x \frac{d}{dx}(x^2) = 2x dxd(x2)=2x
d d x ( x 3 ) = 3 x 2 \frac{d}{dx}(x^3) = 3x^2 dxd(x3)=3x2
从上面的幂函数导数,我们有理由猜测 ( d / d x ) ( x n ) = n x n − 1 (d/dx)(x^n) = nx^{n-1} (d/dx)(xn)=nxn1
幂函数的导数
d d x ( x n ) = n x n − 1 \frac{d}{dx}(x^n) = nx^{n-1} dxd(xn)=nxn1
第一种证明
已知公式
x n − a n = ( x − a ) ( x n − 1 + x n − 2 a + ⋯ + x a n − 2 + a n − 1 ) x^n - a^n = (x - a)(x^{n-1} + x^{n-2}a + \dots +xa^{n-2} + a^{n-1}) xnan=(xa)(xn1+xn2a++xan2+an1)
因此:
f ′ ( a ) = lim ⁡ x → a f ( x ) − f ( a ) x − a = lim ⁡ x → a x n − a n x − a = lim ⁡ x → a ( x n − 1 + x n − 2 a + ⋯ + x a n − 2 + a n − 1 ) = a n − 1 + a n − 2 a + ⋯ + a a n − 2 + a n − 1 = n a n − 1 \begin{align*} f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} &= \lim_{x \to a} \frac{x^n - a^n}{x - a} \\ &= \lim_{x \to a} (x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1}) \\ &= a^{n-1} + a^{n-2} a+ \dots + aa^{n-2} + a^{n-1} \\ &= n a^{n-1} \end{align*} f(a)=xalimxaf(x)f(a)=xalimxaxnan=xalim(xn1+xn2a++xan2+an1)=an1+an2a++aan2+an1=nan1
第二种证明
使用二项式定理进行展开:

f ′ ( x ) = lim ⁡ h → 0 ( x + h ) n − x n h = lim ⁡ h → 0 [ x n + n x n − 1 h + n ( n − 1 ) 2 x n − 2 h 2 + ⋯ + n h x n − 1 + h n ] − x n h = lim ⁡ h → 0 [ n x n − 1 h + n ( n − 1 ) 2 x n − 2 h 2 + ⋯ + n h x n − 1 + h n h ] = lim ⁡ h → 0 [ n x n − 1 + n ( n − 1 ) 2 x n − 2 h + ⋯ + n h x n − 1 + h n − 1 ] = n x n − 1 \begin{align*}f'(x) = \lim_{h \to 0} \frac{(x + h)^n - x^n}{h} &= \lim_{h \to 0} \frac{\left[ x^n + nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \cdots + nhx^{n-1} + h^n \right] - x^n}{h} \\ &= \lim_{h \to 0} \left[ \frac{nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \cdots + nhx^{n-1} + h^n}{h} \right] \\ &= \lim_{h \to 0} \left[ nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}h + \cdots + nhx^{n-1} + h^{n-1} \right] \\ &= nx^{n-1}\end{align*} f(x)=h0limh(x+h)nxn=h0limh[xn+nxn1h+2n(n1)xn2h2++nhxn1+hn]xn=h0lim[hnxn1h+2n(n1)xn2h2++nhxn1+hn]=h0lim[nxn1+2n(n1)xn2h++nhxn1+hn1]=nxn1

例子 1
(a) 如果 f ( x ) = x 6 f(x) = x^6 f(x)=x6,则 f ’ ( x ) = 6 x 5 f’(x) = 6x^5 f(x)=6x5
(b) 如果 y = x 1000 y = x^{1000} y=x1000,则 y ’ = 1000 x 999 y’ = 1000x^{999} y=1000x999
(c) 如果 y = t 4 y = t^4 y=t4,则 d y d t = 4 t 3 \frac{dy}{dt} = 4t^3 dtdy=4t3
(d) 如果 d d r ( r 3 ) = 3 r 2 \frac{d}{dr} (r^3) = 3r^2 drd(r3)=3r2

组合函数的导数

常数倍法则

如果 c c c 是一个常数且 f f f 是可微函数,则
d d x [ c f ( x ) ] = c d d x [ f ( x ) ] \frac{d}{dx}[c f(x)] = c \frac{d}{dx}[f(x)] dxd[cf(x)]=cdxd[f(x)]
证明
t ( x ) = c f ( x ) t(x) = c f(x) t(x)=cf(x)。则
t ’ ( x ) = lim ⁡ h → 0 t ( x + h ) − t ( x ) h = lim ⁡ h → 0 c f ( x + h ) − c f ( x ) h = lim ⁡ h → 0 [ c f ( x + h ) − f ( x ) h ] = c lim ⁡ h → 0 f ( x + h ) − f ( x ) h = c f ’ ( x ) \begin{align*}t’(x) = \lim_{h \to 0} \frac{t(x+h) - t(x)}{h} &= \lim_{h \to 0} \frac{c f(x+h) - c f(x)}{h} \\ &= \lim_{h \to 0} \left[ c \frac{f(x+h) - f(x)}{h} \right] \\ &= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ &= c f’(x)\end{align*} t(x)=h0limht(x+h)t(x)=h0limhcf(x+h)cf(x)=h0lim[chf(x+h)f(x)]=ch0limhf(x+h)f(x)=cf(x)
例子 2
(a) d d x ( 3 x 4 ) = 3 d d x ( x 4 ) = 3 ( 4 x 3 ) = 12 x 3 \frac{d}{dx}(3x^4) = 3 \frac{d}{dx}(x^4) = 3(4x^3) = 12x^3 dxd(3x4)=3dxd(x4)=3(4x3)=12x3

(b) d d x ( 2 x ) = d d x [ 2 ⋅ x ] = 2 ⋅ d d x ( x ) = 2 ⋅ 1 = 2 \frac{d}{dx}(2x) = \frac{d}{dx}[2 \cdot x] = 2 \cdot \frac{d}{dx}(x) = 2 \cdot 1 = 2 dxd(2x)=dxd[2x]=2dxd(x)=21=2

和法则

如果 f f f t t t 都是可微的,则
d d x [ f ( x ) + t ( x ) ] = d d x [ f ( x ) ] + d d x [ t ( x ) ] \frac{d}{dx}[f(x) + t(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[t(x)] dxd[f(x)+t(x)]=dxd[f(x)]+dxd[t(x)]

用导数符号表示,可以写成:
( f + t ) ′ = f ′ + t ′ (f + t)' = f' + t' (f+t)=f+t

证明
F ( x ) = f ( x ) + g ( x ) F(x) = f(x) + g(x) F(x)=f(x)+g(x)。则
F ′ ( x ) = lim ⁡ h → 0 F ( x + h ) − F ( x ) h = lim ⁡ h → 0 [ f ( x + h ) + g ( x + h ) ] − [ f ( x ) + g ( x ) ] h = lim ⁡ h → 0 [ f ( x + h ) − f ( x ) h + g ( x + h ) − g ( x ) h ] = lim ⁡ h → 0 f ( x + h ) − f ( x ) h + lim ⁡ h → 0 g ( x + h ) − g ( x ) h = f ′ ( x ) + g ′ ( x ) \begin{align*}F'(x) &= \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} \\ &= \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h} \\ &= \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h}\right] \\ &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \\ &= f'(x) + g'(x)\end{align*} F(x)=h0limhF(x+h)F(x)=h0limh[f(x+h)+g(x+h)][f(x)+g(x)]=h0lim[hf(x+h)f(x)+hg(x+h)g(x)]=h0limhf(x+h)f(x)+h0limhg(x+h)g(x)=f(x)+g(x)

和法则可以扩展到任意数量函数的和。例如,使用这个定理两次,我们得到
( f + t + h ) ′ = [ ( f + t ) + h ] ′ = ( f + t ) ′ + h ′ = f ′ + t ′ + h ′ (f + t + h)' = [(f + t) + h]' = (f + t)' + h' = f' + t' + h' (f+t+h)=[(f+t)+h]=(f+t)+h=f+t+h

差法则

通过将 f − g f - g fg 写成 f + ( − g ) f + (-g) f+(g) 并应用和法则和常数倍法则,我们得到如下公式。
d d x [ f ( x ) − g ( x ) ] = d d x [ f ( x ) ] − d d x [ g ( x ) ] \frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)] dxd[f(x)g(x)]=dxd[f(x)]dxd[g(x)]

常数倍法则、和法则和差法则可以与幂法则结合,来求任何多项式的导数,如下例所示。
例子 3
d d x ( x 8 + 12 x 5 − 24 x 4 + 10 x 3 − 26 x + 5 ) = d d x ( x 8 ) + 12 d d x ( x 5 ) − 24 d d x ( x 4 ) + 10 d d x ( x 3 ) − 26 d d x ( x ) + d d x ( 5 ) = 8 x 7 + 12 ( 5 x 4 ) − 24 ( 4 x 3 ) + 10 ( 3 x 2 ) − 26 ( 1 ) + 0 = 8 x 7 + 60 x 4 − 96 x 3 + 30 x 2 − 26 \begin{align*} & \frac{d}{dx}(x^8 + 12x^5 - 24x^4 + 10x^3 - 26x + 5) \\ &= \frac{d}{dx}(x^8) + 12 \frac{d}{dx}(x^5) - 24 \frac{d}{dx}(x^4) + 10 \frac{d}{dx}(x^3) - 26 \frac{d}{dx}(x) + \frac{d}{dx}(5)\\ &= 8x^7 + 12(5x^4) - 24(4x^3) + 10(3x^2) - 26(1) + 0 \\ &= 8x^7 + 60x^4 - 96x^3 + 30x^2 - 26\end{align*} dxd(x8+12x524x4+10x326x+5)=dxd(x8)+12dxd(x5)24dxd(x4)+10dxd(x3)26dxd(x)+dxd(5)=8x7+12(5x4)24(4x3)+10(3x2)26(1)+0=8x7+60x496x3+30x226

例子 4
求曲线 y = x 4 − 6 x 2 + 4 y = x^4 - 6x^2 + 4 y=x46x2+4 上切线为水平线的点。


水平切线出现在导数为零的地方。我们有
d y d x = d d x ( x 4 ) − 6 d d x ( x 2 ) + d d x ( 4 ) = 4 x 3 − 12 x = 4 x ( x 2 − 3 ) \frac{dy}{dx} = \frac{d}{dx}(x^4) - 6 \frac{d}{dx}(x^2) + \frac{d}{dx}(4) = 4x^3 - 12x = 4x(x^2 - 3) dxdy=dxd(x4)6dxd(x2)+dxd(4)=4x312x=4x(x23)

因此,当 x = 0 x = 0 x=0 x 2 − 3 = 0 x^2 - 3 = 0 x23=0 时,即 x = ± 3 x = \pm\sqrt{3} x=±3 ,导数为零。因此,给定曲线在 x = 0 , 3 , − 3 x = 0, \sqrt{3}, -\sqrt{3} x=0,3 ,3 时有水平切线。相应的点是 ( 0 , 4 ) (0, 4) (0,4) ( 3 , − 5 ) (\sqrt{3}, -5) (3 ,5) ( − 3 , − 5 ) (-\sqrt{3}, -5) (3 ,5)
在这里插入图片描述

例子 5
粒子的运动方程是 s = 2 t 3 − 5 t 2 + 13 t + 4 s = 2t^3 - 5t^2 + 13t + 4 s=2t35t2+13t+4,其中 s s s 的单位是厘米, t t t 的单位是秒。求加速度作为时间的函数。2秒后的加速度是多少?


速度和加速度是
v ( t ) = d s d t = 6 t 2 − 10 t + 13 v(t) = \frac{ds}{dt} = 6t^2 - 10t + 13 v(t)=dtds=6t210t+13
a ( t ) = d v d t = 12 t − 10 a(t) = \frac{dv}{dt} = 12t - 10 a(t)=dtdv=12t10

2秒后的加速度是 a ( 2 ) = 12 ( 2 ) − 10 = 24 − 10 = 14  cm/s 2 a(2) = 12(2) - 10 = 24 - 10 = 14 \text{ cm/s}^2 a(2)=12(2)10=2410=14 cm/s2

乘积法则

如果 f f f t t t 都是可微的,则
d d x [ f ( x ) g ( x ) ] = f ( x ) d d x [ g ( x ) ] + t ( x ) d d x [ f ( x ) ] \frac{d}{dx}[f(x) g(x)] = f(x) \frac{d}{dx}[g(x)] + t(x) \frac{d}{dx}[f(x)] dxd[f(x)g(x)]=f(x)dxd[g(x)]+t(x)dxd[f(x)]

证明
F ( x ) = f ( x ) t ( x ) F(x) = f(x)t(x) F(x)=f(x)t(x)。则
F ′ ( x ) = lim ⁡ h → 0 F ( x + h ) − F ( x ) h = lim ⁡ h → 0 f ( x + h ) t ( x + h ) − f ( x ) t ( x ) h F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{f(x+h)t(x+h) - f(x)t(x)}{h} F(x)=h0limhF(x+h)F(x)=h0limhf(x+h)t(x+h)f(x)t(x)
为了求解这个极限,我们希望像在和法则的证明中那样,将函数 f f f g g g 分开。我们可以通过在分子中加上和减去 f ( x + h ) g ( x ) f(x+h)g(x) f(x+h)g(x) 来实现这种分离:
F ′ ( x ) = lim ⁡ h → 0 f ( x + h ) t ( x + h ) − f ( x + h ) g ( x ) + f ( x + h ) g ( x ) − f ( x ) g ( x ) h = lim ⁡ h → 0 [ f ( x + h ) g ( x + h ) − f ( x + h ) g ( x ) h + f ( x + h ) g ( x ) − f ( x ) g ( x ) h ] = lim ⁡ h → 0 [ f ( x + h ) g ( x + h ) − g ( x ) h + g ( x ) f ( x + h ) − f ( x ) h ] = f ( x ) lim ⁡ h → 0 t ( x + h ) − g ( x ) h + g ( x ) lim ⁡ h → 0 f ( x + h ) − f ( x ) h = f ( x ) g ′ ( x ) + g ( x ) f ′ ( x ) \begin{align*}F'(x) &= \lim_{h \to 0} \frac{f(x+h)t(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h} \\ &= \lim_{h \to 0} \left[\frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \frac{f(x+h)g(x) - f(x)g(x)}{h}\right] \\ &= \lim_{h \to 0} \left[f(x+h) \frac{g(x+h) - g(x)}{h} + g(x) \frac{f(x+h) - f(x)}{h}\right] \\ &= f(x) \lim_{h \to 0} \frac{t(x+h) - g(x)}{h} + g(x) \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ &= f(x) g'(x) + g(x) f'(x)\end{align*} F(x)=h0limhf(x+h)t(x+h)f(x+h)g(x)+f(x+h)g(x)f(x)g(x)=h0lim[hf(x+h)g(x+h)f(x+h)g(x)+hf(x+h)g(x)f(x)g(x)]=h0lim[f(x+h)hg(x+h)g(x)+g(x)hf(x+h)f(x)]=f(x)h0limht(x+h)g(x)+g(x)h0limhf(x+h)f(x)=f(x)g(x)+g(x)f(x)
简而言之,乘积法则表明,两个函数的乘积的导数是第一个函数乘以第二个函数的导数加上第二个函数乘以第一个函数的导数。

例子 6
如果 h ( x ) = x g ( x ) h(x) = x g(x) h(x)=xg(x) 并且已知 g ( 3 ) = 5 g(3) = 5 g(3)=5 g ′ ( 3 ) = − 2 g'(3) = -2 g(3)=2,求 h ′ ( 3 ) h'(3) h(3)


应用乘积法则,我们得到
h ′ ( x ) = d d x [ x g ( x ) ] = x d d x [ g ( x ) ] + g ( x ) d d x [ x ] = x g ′ ( x ) + g ( x ) ⋅ 1 h'(x) = \frac{d}{dx}[x g(x)] = x \frac{d}{dx}[g(x)] + g(x) \frac{d}{dx}[x] = x g'(x) + g(x) \cdot 1 h(x)=dxd[xg(x)]=xdxd[g(x)]+g(x)dxd[x]=xg(x)+g(x)1

因此,
h ′ ( 3 ) = 3 t ′ ( 3 ) + t ( 3 ) = 3 ⋅ ( − 2 ) + 5 = − 6 + 5 = − 1 h'(3) = 3 t'(3) + t(3) = 3 \cdot (-2) + 5 = -6 + 5 = -1 h(3)=3t(3)+t(3)=3(2)+5=6+5=1

商法则

如果 f f f g g g 可微,则
d d x ( f ( x ) g ( x ) ) = g ( x ) d d x [ f ( x ) ] − f ( x ) d d x [ g ( x ) ] [ g ( x ) ] 2 \frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) = \frac{g(x) \frac{d}{dx}[f(x)] - f(x) \frac{d}{dx}[g(x)]}{[g(x)]^2} dxd(g(x)f(x))=[g(x)]2g(x)dxd[f(x)]f(x)dxd[g(x)]

用导数符号表示:
( f g ) ′ = g f ′ − f g ′ g 2 \left(\frac{f}{g}\right)' = \frac{g f' - f g'}{g^2} (gf)=g2gffg

证明
F ( x ) = f ( x ) g ( x ) F(x) = \frac{f(x)}{g(x)} F(x)=g(x)f(x)。则
F ′ ( x ) = lim ⁡ h → 0 F ( x + h ) − F ( x ) h = lim ⁡ h → 0 f ( x + h ) g ( x + h ) − f ( x ) g ( x ) h = lim ⁡ h → 0 f ( x + h ) g ( x ) − f ( x ) g ( x + h ) h g ( x ) g ( x + h ) \begin{align*}F'(x) &= \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} \\ &= \lim_{h \to 0} \frac{f(x+h) g(x) - f(x) g(x+h)}{h g(x) g(x+h)}\end{align*} F(x)=h0limhF(x+h)F(x)=h0limhg(x+h)f(x+h)g(x)f(x)=h0limhg(x)g(x+h)f(x+h)g(x)f(x)g(x+h)

我们可以通过在分子中加上和减去 f ( x ) g ( x ) f(x) g(x) f(x)g(x) 来将 f f f g g g 分开:
F ′ ( x ) = lim ⁡ h → 0 f ( x + h ) g ( x ) − f ( x ) g ( x ) + f ( x ) g ( x ) − f ( x ) g ( x + h ) h g ( x ) g ( x + h ) = lim ⁡ h → 0 [ f ( x + h ) g ( x ) − f ( x ) g ( x ) h g ( x ) g ( x + h ) + f ( x ) g ( x ) − f ( x ) g ( x + h ) h g ( x ) g ( x + h ) ] = lim ⁡ h → 0 [ g ( x ) f ( x + h ) − f ( x ) h g ( x ) g ( x + h ) − f ( x ) g ( x + h ) − g ( x ) h g ( x ) g ( x + h ) ] = g ( x ) f ′ ( x ) − f ( x ) g ′ ( x ) [ g ( x ) ] 2 \begin{align*}F'(x) &= \lim_{h \to 0} \frac{f(x+h) g(x) - f(x) g(x) + f(x) g(x) - f(x) g(x+h)}{h g(x) g(x+h)} \\ &= \lim_{h \to 0} \left[ \frac{f(x+h) g(x) - f(x) g(x)}{h g(x) g(x+h)} + \frac{f(x) g(x) - f(x) g(x+h)}{h g(x) g(x+h)} \right] \\ &= \lim_{h \to 0} \left[ \frac{g(x) \frac{f(x+h) - f(x)}{h}}{g(x) g(x+h)} - \frac{f(x) \frac{g(x+h) - g(x)}{h}}{g(x) g(x+h)} \right] \\ &= \frac{g(x) f'(x) - f(x) g'(x)}{\left[g(x)\right]^2}\end{align*} F(x)=h0limhg(x)g(x+h)f(x+h)g(x)f(x)g(x)+f(x)g(x)f(x)g(x+h)=h0lim[hg(x)g(x+h)f(x+h)g(x)f(x)g(x)+hg(x)g(x+h)f(x)g(x)f(x)g(x+h)]=h0lim[g(x)g(x+h)g(x)hf(x+h)f(x)g(x)g(x+h)f(x)hg(x+h)g(x)]=[g(x)]2g(x)f(x)f(x)g(x)

因为 g g g x x x 处是连续的,所以 lim ⁡ h → 0 g ( x + h ) = g ( x ) \lim_{h \to 0} g(x+h) = g(x) limh0g(x+h)=g(x)

用语言描述,商法则表示一个商的导数是分母乘以分子导数减去分子乘以分母导数,然后除以分母的平方。
例子 7
y = x 3 + 1 x 2 + 2 x + 1 y = \frac{x^3 + 1}{x^2 + 2x + 1} y=x2+2x+1x3+1。则
y ′ = ( x 2 + 2 x + 1 ) d d x ( x 3 + 1 ) − ( x 3 + 1 ) d d x ( x 2 + 2 x + 1 ) ( x 2 + 2 x + 1 ) 2 = ( x 2 + 2 x + 1 ) ( 3 x 2 ) − ( x 3 + 1 ) ( 2 x + 2 ) ( x 2 + 2 x + 1 ) 2 = ( 3 x 4 + 6 x 3 + 3 x 2 ) − ( 2 x 4 + 2 x 3 + 2 x + 2 x 3 + 2 ) ( x 2 + 2 x + 1 ) 2 = 3 x 4 + 6 x 3 + 3 x 2 − 2 x 4 − 4 x 3 − 2 x 3 − 2 x − 2 ( x 2 + 2 x + 1 ) 2 = x 4 + 2 x 3 + 3 x 2 − 2 x − 2 ( x 2 + 2 x + 1 ) 2 \begin{align*}y' &= \frac{(x^2 + 2x + 1) \frac{d}{dx}(x^3 + 1) - (x^3 + 1) \frac{d}{dx}(x^2 + 2x + 1)}{(x^2 + 2x + 1)^2} \\ &= \frac{(x^2 + 2x + 1)(3x^2) - (x^3 + 1)(2x + 2)}{(x^2 + 2x + 1)^2} \\ &= \frac{(3x^4 + 6x^3 + 3x^2) - (2x^4 + 2x^3 + 2x + 2x^3 + 2)}{(x^2 + 2x + 1)^2} \\ &= \frac{3x^4 + 6x^3 + 3x^2 - 2x^4 - 4x^3 - 2x^3 - 2x - 2}{(x^2 + 2x + 1)^2} \\ &= \frac{x^4 + 2x^3 + 3x^2 - 2x - 2}{(x^2 + 2x + 1)^2}\end{align*} y=(x2+2x+1)2(x2+2x+1)dxd(x3+1)(x3+1)dxd(x2+2x+1)=(x2+2x+1)2(x2+2x+1)(3x2)(x3+1)(2x+2)=(x2+2x+1)2(3x4+6x3+3x2)(2x4+2x3+2x+2x3+2)=(x2+2x+1)23x4+6x3+3x22x44x32x32x2=(x2+2x+1)2x4+2x3+3x22x2

注意
不要每次看到商都使用商法则。有时候,先重写商使其形式更简化以便求导会更容易。例如,尽管可以使用商法则来求导函数 F ( x ) = 3 x 2 + 1 2 x F(x) = \frac{3x^2 + 1}{2x} F(x)=2x3x2+1,但更简单的方法是先进行除法,写成
F ( x ) = 3 x 2 2 x + 1 2 x = 3 x 2 + 1 2 x F(x) = \frac{3x^2}{2x} + \frac{1}{2x} = \frac{3x}{2} + \frac{1}{2x} F(x)=2x3x2+2x1=23x+2x1
然后再求导。

一般幂函数

商法则可以用来将幂法则扩展到指数为负整数的情况。

如果 n n n 是正整数,则
d d x ( x − n ) = − n x − n − 1 \frac{d}{dx}(x^{-n}) = -nx^{-n-1} dxd(xn)=nxn1

证明
d d x ( x − n ) = d d x ( 1 x n ) = x n ⋅ d d x ( 1 ) − 1 ⋅ d d x ( x n ) ( x n ) 2 = 0 − n x n − 1 x 2 n = − n x n − 1 x 2 n = − n x − n − 1 \begin{align*}\frac{d}{dx}(x^{-n}) &= \frac{d}{dx}\left(\frac{1}{x^n}\right) \\ &= \frac{x^n \cdot \frac{d}{dx}(1) - 1 \cdot \frac{d}{dx}(x^n)}{(x^n)^2} = \frac{0 - nx^{n-1}}{x^{2n}} \\ &= -n \frac{x^{n-1}}{x^{2n}} = -n x^{-n-1}\end{align*} dxd(xn)=dxd(xn1)=(xn)2xndxd(1)1dxd(xn)=x2n0nxn1=nx2nxn1=nxn1

例子 8
(a) 如果 y = 1 x y = \frac{1}{x} y=x1,则 d y d x = d d x ( x − 1 ) = − x − 2 = − 1 x 2 \frac{dy}{dx} = \frac{d}{dx}(x^{-1}) = -x^{-2} = -\frac{1}{x^2} dxdy=dxd(x1)=x2=x21

(b) d d t ( 6 t 3 ) = 6 d d t ( t − 3 ) = 6 ⋅ ( − 3 t − 4 ) = − 18 t − 4 \frac{d}{dt}\left(\frac{6}{t^3}\right) = 6 \frac{d}{dt}(t^{-3}) = 6 \cdot (-3t^{-4}) = -18t^{-4} dtd(t36)=6dtd(t3)=6(3t4)=18t4

到目前为止,我们知道当指数 n n n 是正整数或负整数时,幂法则成立。如果 n = 0 n = 0 n=0,则 x 0 = 1 x^0 = 1 x0=1,其导数为 0 0 0。因此,幂法则对任何整数 n n n 都成立。那么如果指数是分数呢?在前面章节得例子中,我们发现
d d x ( x 1 / 2 ) = 1 2 x − 1 / 2 \frac{d}{dx}(x^{1/2}) = \frac{1}{2}x^{-1/2} dxd(x1/2)=21x1/2
这表明幂法则在 n = 1 / 2 n = 1/2 n=1/2 时也成立。事实上,它对任何实数 n n n 都成立,我们将在后面的章节中证明这一点。

幂法则(一般版本)

如果 n n n 是任意实数,则
d d x ( x n ) = n x n − 1 \frac{d}{dx}(x^n) = nx^{n-1} dxd(xn)=nxn1

例子 9
(a) 如果 f ( x ) = x π f(x) = x^{\pi} f(x)=xπ,则
f ′ ( x ) = π x π − 1 f'(x) = \pi x^{\pi - 1} f(x)=πxπ1

(b) 如果 y = 1 3 x 2 y = \frac{1}{3x^2} y=3x21,则
d y d x = d d x ( 3 − 1 x − 2 ) = 3 − 1 ⋅ − 2 x − 3 = − 2 3 x 3 \frac{dy}{dx} = \frac{d}{dx}(3^{-1}x^{-2}) = 3^{-1} \cdot -2x^{-3} = -\frac{2}{3x^3} dxdy=dxd(31x2)=312x3=3x32

例子 10
求函数 f ( t ) = t a + b t f(t) = t \sqrt{a + bt} f(t)=ta+bt 的导数。


使用乘积法则,我们有
f ′ ( t ) = t d d t ( a + b t ) + a + b t d d t ( t ) f'(t) = t \frac{d}{dt}(\sqrt{a + bt}) + \sqrt{a + bt} \frac{d}{dt}(t) f(t)=tdtd(a+bt )+a+bt dtd(t)
= t ⋅ b 2 a + b t + a + b t ⋅ 1 = t \cdot \frac{b}{2\sqrt{a + bt}} + \sqrt{a + bt} \cdot 1 =t2a+bt b+a+bt 1
= b t 2 a + b t + a + b t = \frac{bt}{2\sqrt{a + bt}} + \sqrt{a + bt} =2a+bt bt+a+bt

微分法则使我们能够找到切线,而无需求助于导数的定义。它还使我们能够找到法线。曲线 C C C 在点 P P P 处的法线是通过 P P P 的与 P P P 处的切线垂直的线。(在光学研究中,需要考虑光线与透镜法线之间的角度。)

例子 11
求曲线 y = x 1 + x 2 y = \frac{\sqrt{x}}{1 + x^2} y=1+x2x 在点 ( 1 , 1 2 ) (1, \frac{1}{2}) (1,21) 处的切线和法线的方程。


根据商法则,我们有
d y d x = ( 1 + x 2 ) ⋅ d d x ( x ) − x ⋅ d d x ( 1 + x 2 ) ( 1 + x 2 ) 2 = ( 1 + x 2 ) ⋅ 1 2 x − x ⋅ 2 x ( 1 + x 2 ) 2 \frac{dy}{dx} = \frac{(1 + x^2) \cdot \frac{d}{dx}(\sqrt{x}) - \sqrt{x} \cdot \frac{d}{dx}(1 + x^2)}{(1 + x^2)^2} = \frac{(1 + x^2) \cdot \frac{1}{2\sqrt{x}} - \sqrt{x} \cdot 2x}{(1 + x^2)^2} dxdy=(1+x2)2(1+x2)dxd(x )x dxd(1+x2)=(1+x2)2(1+x2)2x 1x 2x

简化得
d y d x = 1 + x 2 2 x − 2 x x ( 1 + x 2 ) 2 = 1 + x 2 − 4 x 2 2 x ( 1 + x 2 ) 2 = 1 − 3 x 2 2 x ( 1 + x 2 ) 2 = 1 − 3 x 2 2 x ( 1 + x 2 ) 2 \frac{dy}{dx} = \frac{\frac{1 + x^2}{2\sqrt{x}} - 2x\sqrt{x}}{(1 + x^2)^2} = \frac{\frac{1 + x^2 - 4x^2}{2\sqrt{x}}}{(1 + x^2)^2} = \frac{\frac{1 - 3x^2}{2\sqrt{x}}}{(1 + x^2)^2} = \frac{1 - 3x^2}{2\sqrt{x}(1 + x^2)^2} dxdy=(1+x2)22x 1+x22xx =(1+x2)22x 1+x24x2=(1+x2)22x 13x2=2x (1+x2)213x2

所以在点 ( 1 , 1 2 ) (1, \frac{1}{2}) (1,21) 处切线的斜率是
d y d x ∣ x = 1 = 1 − 3 ⋅ 1 2 2 ⋅ 1 ⋅ ( 1 + 1 2 ) 2 = 1 − 3 2 ⋅ 1 ⋅ ( 1 + 1 ) 2 = − 2 2 ⋅ 4 = − 2 8 = − 1 4 \left. \frac{dy}{dx} \right|_{x = 1} = \frac{1 - 3 \cdot 1^2}{2 \cdot \sqrt{1} \cdot (1 + 1^2)^2} = \frac{1 - 3}{2 \cdot 1 \cdot (1 + 1)^2} = \frac{-2}{2 \cdot 4} = \frac{-2}{8} = -\frac{1}{4} dxdy x=1=21 (1+12)21312=21(1+1)213=242=82=41

我们使用点斜式来写在点 ( 1 , 1 2 ) (1, \frac{1}{2}) (1,21) 处切线的方程:
y − 1 2 = − 1 4 ( x − 1 ) 或 y = − 1 4 x + 3 4 y - \frac{1}{2} = -\frac{1}{4}(x - 1) \quad \text{或} \quad y = -\frac{1}{4}x + \frac{3}{4} y21=41(x1)y=41x+43

在点 ( 1 , 1 2 ) (1, \frac{1}{2}) (1,21) 处法线的斜率是 − 1 4 -\frac{1}{4} 41 的负倒数,即 4,因此法线的方程是
y − 1 2 = 4 ( x − 1 ) 或 y = 4 x − 7 2 y - \frac{1}{2} = 4(x - 1) \quad \text{或} \quad y = 4x - \frac{7}{2} y21=4(x1)y=4x27

曲线及其切线和法线如图所示。
在这里插入图片描述
例子 12
双曲线 x y = 12 xy = 12 xy=12 上的哪些点处的切线与直线 3 x + y = 0 3x + y = 0 3x+y=0 平行?


由于 x y = 12 xy = 12 xy=12 可以写成 y = 12 x y = \frac{12}{x} y=x12,我们有
d y d x = d d x ( 12 x ) = 12 ⋅ d d x ( x − 1 ) = 12 ⋅ ( − x − 2 ) = − 12 x 2 \frac{dy}{dx} = \frac{d}{dx} \left( \frac{12}{x} \right) = 12 \cdot \frac{d}{dx} \left( x^{-1} \right) = 12 \cdot (-x^{-2}) = -\frac{12}{x^2} dxdy=dxd(x12)=12dxd(x1)=12(x2)=x212

令所求点的 x x x 坐标为 a a a,则切线的斜率为
− 12 a 2 -\frac{12}{a^2} a212

切线与直线 3 x + y = 0 3x + y = 0 3x+y=0 平行,这意味着两条直线的斜率相同。直线 3 x + y = 0 3x + y = 0 3x+y=0 的斜率为 − 3 -3 3。因此,
− 12 a 2 = − 3 -\frac{12}{a^2} = -3 a212=3

解这个方程,我们得到
12 a 2 = 3 \frac{12}{a^2} = 3 a212=3
a 2 = 12 3 a^2 = \frac{12}{3} a2=312
a 2 = 4 a^2 = 4 a2=4
a = 2 或 a = − 2 a = 2 \quad \text{或} \quad a = -2 a=2a=2

因此, x x x 坐标为 2 2 2 − 2 -2 2 的点上,切线与直线 3 x + y = 0 3x + y = 0 3x+y=0 平行。

对应的 y y y 坐标为:
a = 2 a = 2 a=2 时, y = 12 2 = 6 y = \frac{12}{2} = 6 y=212=6
a = − 2 a = -2 a=2 时, y = 12 − 2 = − 6 y = \frac{12}{-2} = -6 y=212=6

所以切线与直线 3 x + y = 0 3x + y = 0 3x+y=0 平行的点是 ( 2 , 6 ) (2, 6) (2,6) ( − 2 , − 6 ) (-2, -6) (2,6)
在这里插入图片描述
我们总结一下迄今为止学到的微分公式如下:

微分公式表

d d x ( c ) = 0 d d x ( x n ) = n x n − 1 d d x ( c f ) = c f ′ ( f + g ) ′ = f ′ + g ′ ( f − g ) ′ = f ′ − g ′ ( f g ) ′ = f g ′ + g f ′ ( f g ) ′ = g f ′ − f g ′ g 2 \begin{aligned} &\frac{d}{dx}(c) = 0 \\ &\frac{d}{dx}(x^n) = nx^{n-1} \\ &\frac{d}{dx}(cf) = c f' \\ &(f + g)' = f' + g' \\ &(f - g)' = f' - g' \\ &(f g)' = f g' + g f' \\ &\left(\frac{f}{g}\right)' = \frac{g f' - f g'}{g^2} \\ \end{aligned} dxd(c)=0dxd(xn)=nxn1dxd(cf)=cf(f+g)=f+g(fg)=fg(fg)=fg+gf(gf)=g2gffg

weixin063传染病防控宣传微信小程序系统的设计与实现+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值