常见函数的导数
常量函数的导数
d
d
x
(
c
)
=
0
\frac{d}{dx}(c) = 0
dxd(c)=0
常量函数的图像是一条水平线
y
=
c
y = c
y=c,它的斜率为0,所以我们必须有
f
′
(
x
)
=
0
f'(x) = 0
f′(x)=0。从导数的定义来看,证明也很简单:
f
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
=
lim
h
→
0
c
−
c
h
=
lim
h
→
0
0
h
=
0
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} \frac{0}{h} = 0
f′(x)=h→0limhf(x+h)−f(x)=h→0limhc−c=h→0limh0=0
幂函数的导数
接下来看幂函数
f
(
x
)
=
x
n
f(x) = x^n
f(x)=xn,其中
n
n
n为正整数。当
n
=
1
n = 1
n=1时,函数的图像是一条直线,斜率为
1
1
1。
d
d
x
(
x
)
=
1
\frac{d}{dx}(x) = 1
dxd(x)=1
当
n
=
2
n = 2
n=2或
n
=
3
n = 3
n=3时,根据上一节的计算,我们得知它们的导数为
d
d
x
(
x
2
)
=
2
x
\frac{d}{dx}(x^2) = 2x
dxd(x2)=2x
d
d
x
(
x
3
)
=
3
x
2
\frac{d}{dx}(x^3) = 3x^2
dxd(x3)=3x2
从上面的幂函数导数,我们有理由猜测
(
d
/
d
x
)
(
x
n
)
=
n
x
n
−
1
(d/dx)(x^n) = nx^{n-1}
(d/dx)(xn)=nxn−1。
幂函数的导数
d
d
x
(
x
n
)
=
n
x
n
−
1
\frac{d}{dx}(x^n) = nx^{n-1}
dxd(xn)=nxn−1
第一种证明
已知公式
x
n
−
a
n
=
(
x
−
a
)
(
x
n
−
1
+
x
n
−
2
a
+
⋯
+
x
a
n
−
2
+
a
n
−
1
)
x^n - a^n = (x - a)(x^{n-1} + x^{n-2}a + \dots +xa^{n-2} + a^{n-1})
xn−an=(x−a)(xn−1+xn−2a+⋯+xan−2+an−1)
因此:
f
′
(
a
)
=
lim
x
→
a
f
(
x
)
−
f
(
a
)
x
−
a
=
lim
x
→
a
x
n
−
a
n
x
−
a
=
lim
x
→
a
(
x
n
−
1
+
x
n
−
2
a
+
⋯
+
x
a
n
−
2
+
a
n
−
1
)
=
a
n
−
1
+
a
n
−
2
a
+
⋯
+
a
a
n
−
2
+
a
n
−
1
=
n
a
n
−
1
\begin{align*} f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} &= \lim_{x \to a} \frac{x^n - a^n}{x - a} \\ &= \lim_{x \to a} (x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1}) \\ &= a^{n-1} + a^{n-2} a+ \dots + aa^{n-2} + a^{n-1} \\ &= n a^{n-1} \end{align*}
f′(a)=x→alimx−af(x)−f(a)=x→alimx−axn−an=x→alim(xn−1+xn−2a+⋯+xan−2+an−1)=an−1+an−2a+⋯+aan−2+an−1=nan−1
第二种证明
使用二项式定理进行展开:
f ′ ( x ) = lim h → 0 ( x + h ) n − x n h = lim h → 0 [ x n + n x n − 1 h + n ( n − 1 ) 2 x n − 2 h 2 + ⋯ + n h x n − 1 + h n ] − x n h = lim h → 0 [ n x n − 1 h + n ( n − 1 ) 2 x n − 2 h 2 + ⋯ + n h x n − 1 + h n h ] = lim h → 0 [ n x n − 1 + n ( n − 1 ) 2 x n − 2 h + ⋯ + n h x n − 1 + h n − 1 ] = n x n − 1 \begin{align*}f'(x) = \lim_{h \to 0} \frac{(x + h)^n - x^n}{h} &= \lim_{h \to 0} \frac{\left[ x^n + nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \cdots + nhx^{n-1} + h^n \right] - x^n}{h} \\ &= \lim_{h \to 0} \left[ \frac{nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \cdots + nhx^{n-1} + h^n}{h} \right] \\ &= \lim_{h \to 0} \left[ nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}h + \cdots + nhx^{n-1} + h^{n-1} \right] \\ &= nx^{n-1}\end{align*} f′(x)=h→0limh(x+h)n−xn=h→0limh[xn+nxn−1h+2n(n−1)xn−2h2+⋯+nhxn−1+hn]−xn=h→0lim[hnxn−1h+2n(n−1)xn−2h2+⋯+nhxn−1+hn]=h→0lim[nxn−1+2n(n−1)xn−2h+⋯+nhxn−1+hn−1]=nxn−1
例子 1
(a) 如果
f
(
x
)
=
x
6
f(x) = x^6
f(x)=x6,则
f
’
(
x
)
=
6
x
5
f’(x) = 6x^5
f’(x)=6x5。
(b) 如果
y
=
x
1000
y = x^{1000}
y=x1000,则
y
’
=
1000
x
999
y’ = 1000x^{999}
y’=1000x999。
(c) 如果
y
=
t
4
y = t^4
y=t4,则
d
y
d
t
=
4
t
3
\frac{dy}{dt} = 4t^3
dtdy=4t3。
(d) 如果
d
d
r
(
r
3
)
=
3
r
2
\frac{d}{dr} (r^3) = 3r^2
drd(r3)=3r2。
组合函数的导数
常数倍法则
如果
c
c
c 是一个常数且
f
f
f 是可微函数,则
d
d
x
[
c
f
(
x
)
]
=
c
d
d
x
[
f
(
x
)
]
\frac{d}{dx}[c f(x)] = c \frac{d}{dx}[f(x)]
dxd[cf(x)]=cdxd[f(x)]
证明
令
t
(
x
)
=
c
f
(
x
)
t(x) = c f(x)
t(x)=cf(x)。则
t
’
(
x
)
=
lim
h
→
0
t
(
x
+
h
)
−
t
(
x
)
h
=
lim
h
→
0
c
f
(
x
+
h
)
−
c
f
(
x
)
h
=
lim
h
→
0
[
c
f
(
x
+
h
)
−
f
(
x
)
h
]
=
c
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
=
c
f
’
(
x
)
\begin{align*}t’(x) = \lim_{h \to 0} \frac{t(x+h) - t(x)}{h} &= \lim_{h \to 0} \frac{c f(x+h) - c f(x)}{h} \\ &= \lim_{h \to 0} \left[ c \frac{f(x+h) - f(x)}{h} \right] \\ &= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ &= c f’(x)\end{align*}
t’(x)=h→0limht(x+h)−t(x)=h→0limhcf(x+h)−cf(x)=h→0lim[chf(x+h)−f(x)]=ch→0limhf(x+h)−f(x)=cf’(x)
例子 2
(a)
d
d
x
(
3
x
4
)
=
3
d
d
x
(
x
4
)
=
3
(
4
x
3
)
=
12
x
3
\frac{d}{dx}(3x^4) = 3 \frac{d}{dx}(x^4) = 3(4x^3) = 12x^3
dxd(3x4)=3dxd(x4)=3(4x3)=12x3
(b) d d x ( 2 x ) = d d x [ 2 ⋅ x ] = 2 ⋅ d d x ( x ) = 2 ⋅ 1 = 2 \frac{d}{dx}(2x) = \frac{d}{dx}[2 \cdot x] = 2 \cdot \frac{d}{dx}(x) = 2 \cdot 1 = 2 dxd(2x)=dxd[2⋅x]=2⋅dxd(x)=2⋅1=2
和法则
如果
f
f
f 和
t
t
t 都是可微的,则
d
d
x
[
f
(
x
)
+
t
(
x
)
]
=
d
d
x
[
f
(
x
)
]
+
d
d
x
[
t
(
x
)
]
\frac{d}{dx}[f(x) + t(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[t(x)]
dxd[f(x)+t(x)]=dxd[f(x)]+dxd[t(x)]
用导数符号表示,可以写成:
(
f
+
t
)
′
=
f
′
+
t
′
(f + t)' = f' + t'
(f+t)′=f′+t′
证明
令
F
(
x
)
=
f
(
x
)
+
g
(
x
)
F(x) = f(x) + g(x)
F(x)=f(x)+g(x)。则
F
′
(
x
)
=
lim
h
→
0
F
(
x
+
h
)
−
F
(
x
)
h
=
lim
h
→
0
[
f
(
x
+
h
)
+
g
(
x
+
h
)
]
−
[
f
(
x
)
+
g
(
x
)
]
h
=
lim
h
→
0
[
f
(
x
+
h
)
−
f
(
x
)
h
+
g
(
x
+
h
)
−
g
(
x
)
h
]
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
+
lim
h
→
0
g
(
x
+
h
)
−
g
(
x
)
h
=
f
′
(
x
)
+
g
′
(
x
)
\begin{align*}F'(x) &= \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} \\ &= \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h} \\ &= \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h}\right] \\ &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \\ &= f'(x) + g'(x)\end{align*}
F′(x)=h→0limhF(x+h)−F(x)=h→0limh[f(x+h)+g(x+h)]−[f(x)+g(x)]=h→0lim[hf(x+h)−f(x)+hg(x+h)−g(x)]=h→0limhf(x+h)−f(x)+h→0limhg(x+h)−g(x)=f′(x)+g′(x)
和法则可以扩展到任意数量函数的和。例如,使用这个定理两次,我们得到
(
f
+
t
+
h
)
′
=
[
(
f
+
t
)
+
h
]
′
=
(
f
+
t
)
′
+
h
′
=
f
′
+
t
′
+
h
′
(f + t + h)' = [(f + t) + h]' = (f + t)' + h' = f' + t' + h'
(f+t+h)′=[(f+t)+h]′=(f+t)′+h′=f′+t′+h′
差法则
通过将
f
−
g
f - g
f−g 写成
f
+
(
−
g
)
f + (-g)
f+(−g) 并应用和法则和常数倍法则,我们得到如下公式。
d
d
x
[
f
(
x
)
−
g
(
x
)
]
=
d
d
x
[
f
(
x
)
]
−
d
d
x
[
g
(
x
)
]
\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)]
dxd[f(x)−g(x)]=dxd[f(x)]−dxd[g(x)]
常数倍法则、和法则和差法则可以与幂法则结合,来求任何多项式的导数,如下例所示。
例子 3
d
d
x
(
x
8
+
12
x
5
−
24
x
4
+
10
x
3
−
26
x
+
5
)
=
d
d
x
(
x
8
)
+
12
d
d
x
(
x
5
)
−
24
d
d
x
(
x
4
)
+
10
d
d
x
(
x
3
)
−
26
d
d
x
(
x
)
+
d
d
x
(
5
)
=
8
x
7
+
12
(
5
x
4
)
−
24
(
4
x
3
)
+
10
(
3
x
2
)
−
26
(
1
)
+
0
=
8
x
7
+
60
x
4
−
96
x
3
+
30
x
2
−
26
\begin{align*} & \frac{d}{dx}(x^8 + 12x^5 - 24x^4 + 10x^3 - 26x + 5) \\ &= \frac{d}{dx}(x^8) + 12 \frac{d}{dx}(x^5) - 24 \frac{d}{dx}(x^4) + 10 \frac{d}{dx}(x^3) - 26 \frac{d}{dx}(x) + \frac{d}{dx}(5)\\ &= 8x^7 + 12(5x^4) - 24(4x^3) + 10(3x^2) - 26(1) + 0 \\ &= 8x^7 + 60x^4 - 96x^3 + 30x^2 - 26\end{align*}
dxd(x8+12x5−24x4+10x3−26x+5)=dxd(x8)+12dxd(x5)−24dxd(x4)+10dxd(x3)−26dxd(x)+dxd(5)=8x7+12(5x4)−24(4x3)+10(3x2)−26(1)+0=8x7+60x4−96x3+30x2−26
例子 4
求曲线
y
=
x
4
−
6
x
2
+
4
y = x^4 - 6x^2 + 4
y=x4−6x2+4 上切线为水平线的点。
解
水平切线出现在导数为零的地方。我们有
d
y
d
x
=
d
d
x
(
x
4
)
−
6
d
d
x
(
x
2
)
+
d
d
x
(
4
)
=
4
x
3
−
12
x
=
4
x
(
x
2
−
3
)
\frac{dy}{dx} = \frac{d}{dx}(x^4) - 6 \frac{d}{dx}(x^2) + \frac{d}{dx}(4) = 4x^3 - 12x = 4x(x^2 - 3)
dxdy=dxd(x4)−6dxd(x2)+dxd(4)=4x3−12x=4x(x2−3)
因此,当
x
=
0
x = 0
x=0 或
x
2
−
3
=
0
x^2 - 3 = 0
x2−3=0 时,即
x
=
±
3
x = \pm\sqrt{3}
x=±3,导数为零。因此,给定曲线在
x
=
0
,
3
,
−
3
x = 0, \sqrt{3}, -\sqrt{3}
x=0,3,−3 时有水平切线。相应的点是
(
0
,
4
)
(0, 4)
(0,4),
(
3
,
−
5
)
(\sqrt{3}, -5)
(3,−5) 和
(
−
3
,
−
5
)
(-\sqrt{3}, -5)
(−3,−5)。
例子 5
粒子的运动方程是
s
=
2
t
3
−
5
t
2
+
13
t
+
4
s = 2t^3 - 5t^2 + 13t + 4
s=2t3−5t2+13t+4,其中
s
s
s 的单位是厘米,
t
t
t 的单位是秒。求加速度作为时间的函数。2秒后的加速度是多少?
解
速度和加速度是
v
(
t
)
=
d
s
d
t
=
6
t
2
−
10
t
+
13
v(t) = \frac{ds}{dt} = 6t^2 - 10t + 13
v(t)=dtds=6t2−10t+13
a
(
t
)
=
d
v
d
t
=
12
t
−
10
a(t) = \frac{dv}{dt} = 12t - 10
a(t)=dtdv=12t−10
2秒后的加速度是 a ( 2 ) = 12 ( 2 ) − 10 = 24 − 10 = 14 cm/s 2 a(2) = 12(2) - 10 = 24 - 10 = 14 \text{ cm/s}^2 a(2)=12(2)−10=24−10=14 cm/s2
乘积法则
如果
f
f
f 和
t
t
t 都是可微的,则
d
d
x
[
f
(
x
)
g
(
x
)
]
=
f
(
x
)
d
d
x
[
g
(
x
)
]
+
t
(
x
)
d
d
x
[
f
(
x
)
]
\frac{d}{dx}[f(x) g(x)] = f(x) \frac{d}{dx}[g(x)] + t(x) \frac{d}{dx}[f(x)]
dxd[f(x)g(x)]=f(x)dxd[g(x)]+t(x)dxd[f(x)]
证明
令
F
(
x
)
=
f
(
x
)
t
(
x
)
F(x) = f(x)t(x)
F(x)=f(x)t(x)。则
F
′
(
x
)
=
lim
h
→
0
F
(
x
+
h
)
−
F
(
x
)
h
=
lim
h
→
0
f
(
x
+
h
)
t
(
x
+
h
)
−
f
(
x
)
t
(
x
)
h
F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{f(x+h)t(x+h) - f(x)t(x)}{h}
F′(x)=h→0limhF(x+h)−F(x)=h→0limhf(x+h)t(x+h)−f(x)t(x)
为了求解这个极限,我们希望像在和法则的证明中那样,将函数
f
f
f 和
g
g
g 分开。我们可以通过在分子中加上和减去
f
(
x
+
h
)
g
(
x
)
f(x+h)g(x)
f(x+h)g(x) 来实现这种分离:
F
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
t
(
x
+
h
)
−
f
(
x
+
h
)
g
(
x
)
+
f
(
x
+
h
)
g
(
x
)
−
f
(
x
)
g
(
x
)
h
=
lim
h
→
0
[
f
(
x
+
h
)
g
(
x
+
h
)
−
f
(
x
+
h
)
g
(
x
)
h
+
f
(
x
+
h
)
g
(
x
)
−
f
(
x
)
g
(
x
)
h
]
=
lim
h
→
0
[
f
(
x
+
h
)
g
(
x
+
h
)
−
g
(
x
)
h
+
g
(
x
)
f
(
x
+
h
)
−
f
(
x
)
h
]
=
f
(
x
)
lim
h
→
0
t
(
x
+
h
)
−
g
(
x
)
h
+
g
(
x
)
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
=
f
(
x
)
g
′
(
x
)
+
g
(
x
)
f
′
(
x
)
\begin{align*}F'(x) &= \lim_{h \to 0} \frac{f(x+h)t(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h} \\ &= \lim_{h \to 0} \left[\frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \frac{f(x+h)g(x) - f(x)g(x)}{h}\right] \\ &= \lim_{h \to 0} \left[f(x+h) \frac{g(x+h) - g(x)}{h} + g(x) \frac{f(x+h) - f(x)}{h}\right] \\ &= f(x) \lim_{h \to 0} \frac{t(x+h) - g(x)}{h} + g(x) \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ &= f(x) g'(x) + g(x) f'(x)\end{align*}
F′(x)=h→0limhf(x+h)t(x+h)−f(x+h)g(x)+f(x+h)g(x)−f(x)g(x)=h→0lim[hf(x+h)g(x+h)−f(x+h)g(x)+hf(x+h)g(x)−f(x)g(x)]=h→0lim[f(x+h)hg(x+h)−g(x)+g(x)hf(x+h)−f(x)]=f(x)h→0limht(x+h)−g(x)+g(x)h→0limhf(x+h)−f(x)=f(x)g′(x)+g(x)f′(x)
简而言之,乘积法则表明,两个函数的乘积的导数是第一个函数乘以第二个函数的导数加上第二个函数乘以第一个函数的导数。
例子 6
如果
h
(
x
)
=
x
g
(
x
)
h(x) = x g(x)
h(x)=xg(x) 并且已知
g
(
3
)
=
5
g(3) = 5
g(3)=5 和
g
′
(
3
)
=
−
2
g'(3) = -2
g′(3)=−2,求
h
′
(
3
)
h'(3)
h′(3)。
解
应用乘积法则,我们得到
h
′
(
x
)
=
d
d
x
[
x
g
(
x
)
]
=
x
d
d
x
[
g
(
x
)
]
+
g
(
x
)
d
d
x
[
x
]
=
x
g
′
(
x
)
+
g
(
x
)
⋅
1
h'(x) = \frac{d}{dx}[x g(x)] = x \frac{d}{dx}[g(x)] + g(x) \frac{d}{dx}[x] = x g'(x) + g(x) \cdot 1
h′(x)=dxd[xg(x)]=xdxd[g(x)]+g(x)dxd[x]=xg′(x)+g(x)⋅1
因此,
h
′
(
3
)
=
3
t
′
(
3
)
+
t
(
3
)
=
3
⋅
(
−
2
)
+
5
=
−
6
+
5
=
−
1
h'(3) = 3 t'(3) + t(3) = 3 \cdot (-2) + 5 = -6 + 5 = -1
h′(3)=3t′(3)+t(3)=3⋅(−2)+5=−6+5=−1
商法则
如果
f
f
f 和
g
g
g 可微,则
d
d
x
(
f
(
x
)
g
(
x
)
)
=
g
(
x
)
d
d
x
[
f
(
x
)
]
−
f
(
x
)
d
d
x
[
g
(
x
)
]
[
g
(
x
)
]
2
\frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) = \frac{g(x) \frac{d}{dx}[f(x)] - f(x) \frac{d}{dx}[g(x)]}{[g(x)]^2}
dxd(g(x)f(x))=[g(x)]2g(x)dxd[f(x)]−f(x)dxd[g(x)]
用导数符号表示:
(
f
g
)
′
=
g
f
′
−
f
g
′
g
2
\left(\frac{f}{g}\right)' = \frac{g f' - f g'}{g^2}
(gf)′=g2gf′−fg′
证明
令
F
(
x
)
=
f
(
x
)
g
(
x
)
F(x) = \frac{f(x)}{g(x)}
F(x)=g(x)f(x)。则
F
′
(
x
)
=
lim
h
→
0
F
(
x
+
h
)
−
F
(
x
)
h
=
lim
h
→
0
f
(
x
+
h
)
g
(
x
+
h
)
−
f
(
x
)
g
(
x
)
h
=
lim
h
→
0
f
(
x
+
h
)
g
(
x
)
−
f
(
x
)
g
(
x
+
h
)
h
g
(
x
)
g
(
x
+
h
)
\begin{align*}F'(x) &= \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} \\ &= \lim_{h \to 0} \frac{f(x+h) g(x) - f(x) g(x+h)}{h g(x) g(x+h)}\end{align*}
F′(x)=h→0limhF(x+h)−F(x)=h→0limhg(x+h)f(x+h)−g(x)f(x)=h→0limhg(x)g(x+h)f(x+h)g(x)−f(x)g(x+h)
我们可以通过在分子中加上和减去
f
(
x
)
g
(
x
)
f(x) g(x)
f(x)g(x) 来将
f
f
f 和
g
g
g 分开:
F
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
g
(
x
)
−
f
(
x
)
g
(
x
)
+
f
(
x
)
g
(
x
)
−
f
(
x
)
g
(
x
+
h
)
h
g
(
x
)
g
(
x
+
h
)
=
lim
h
→
0
[
f
(
x
+
h
)
g
(
x
)
−
f
(
x
)
g
(
x
)
h
g
(
x
)
g
(
x
+
h
)
+
f
(
x
)
g
(
x
)
−
f
(
x
)
g
(
x
+
h
)
h
g
(
x
)
g
(
x
+
h
)
]
=
lim
h
→
0
[
g
(
x
)
f
(
x
+
h
)
−
f
(
x
)
h
g
(
x
)
g
(
x
+
h
)
−
f
(
x
)
g
(
x
+
h
)
−
g
(
x
)
h
g
(
x
)
g
(
x
+
h
)
]
=
g
(
x
)
f
′
(
x
)
−
f
(
x
)
g
′
(
x
)
[
g
(
x
)
]
2
\begin{align*}F'(x) &= \lim_{h \to 0} \frac{f(x+h) g(x) - f(x) g(x) + f(x) g(x) - f(x) g(x+h)}{h g(x) g(x+h)} \\ &= \lim_{h \to 0} \left[ \frac{f(x+h) g(x) - f(x) g(x)}{h g(x) g(x+h)} + \frac{f(x) g(x) - f(x) g(x+h)}{h g(x) g(x+h)} \right] \\ &= \lim_{h \to 0} \left[ \frac{g(x) \frac{f(x+h) - f(x)}{h}}{g(x) g(x+h)} - \frac{f(x) \frac{g(x+h) - g(x)}{h}}{g(x) g(x+h)} \right] \\ &= \frac{g(x) f'(x) - f(x) g'(x)}{\left[g(x)\right]^2}\end{align*}
F′(x)=h→0limhg(x)g(x+h)f(x+h)g(x)−f(x)g(x)+f(x)g(x)−f(x)g(x+h)=h→0lim[hg(x)g(x+h)f(x+h)g(x)−f(x)g(x)+hg(x)g(x+h)f(x)g(x)−f(x)g(x+h)]=h→0lim[g(x)g(x+h)g(x)hf(x+h)−f(x)−g(x)g(x+h)f(x)hg(x+h)−g(x)]=[g(x)]2g(x)f′(x)−f(x)g′(x)
因为 g g g 在 x x x 处是连续的,所以 lim h → 0 g ( x + h ) = g ( x ) \lim_{h \to 0} g(x+h) = g(x) limh→0g(x+h)=g(x)。
用语言描述,商法则表示一个商的导数是分母乘以分子导数减去分子乘以分母导数,然后除以分母的平方。
例子 7
令
y
=
x
3
+
1
x
2
+
2
x
+
1
y = \frac{x^3 + 1}{x^2 + 2x + 1}
y=x2+2x+1x3+1。则
y
′
=
(
x
2
+
2
x
+
1
)
d
d
x
(
x
3
+
1
)
−
(
x
3
+
1
)
d
d
x
(
x
2
+
2
x
+
1
)
(
x
2
+
2
x
+
1
)
2
=
(
x
2
+
2
x
+
1
)
(
3
x
2
)
−
(
x
3
+
1
)
(
2
x
+
2
)
(
x
2
+
2
x
+
1
)
2
=
(
3
x
4
+
6
x
3
+
3
x
2
)
−
(
2
x
4
+
2
x
3
+
2
x
+
2
x
3
+
2
)
(
x
2
+
2
x
+
1
)
2
=
3
x
4
+
6
x
3
+
3
x
2
−
2
x
4
−
4
x
3
−
2
x
3
−
2
x
−
2
(
x
2
+
2
x
+
1
)
2
=
x
4
+
2
x
3
+
3
x
2
−
2
x
−
2
(
x
2
+
2
x
+
1
)
2
\begin{align*}y' &= \frac{(x^2 + 2x + 1) \frac{d}{dx}(x^3 + 1) - (x^3 + 1) \frac{d}{dx}(x^2 + 2x + 1)}{(x^2 + 2x + 1)^2} \\ &= \frac{(x^2 + 2x + 1)(3x^2) - (x^3 + 1)(2x + 2)}{(x^2 + 2x + 1)^2} \\ &= \frac{(3x^4 + 6x^3 + 3x^2) - (2x^4 + 2x^3 + 2x + 2x^3 + 2)}{(x^2 + 2x + 1)^2} \\ &= \frac{3x^4 + 6x^3 + 3x^2 - 2x^4 - 4x^3 - 2x^3 - 2x - 2}{(x^2 + 2x + 1)^2} \\ &= \frac{x^4 + 2x^3 + 3x^2 - 2x - 2}{(x^2 + 2x + 1)^2}\end{align*}
y′=(x2+2x+1)2(x2+2x+1)dxd(x3+1)−(x3+1)dxd(x2+2x+1)=(x2+2x+1)2(x2+2x+1)(3x2)−(x3+1)(2x+2)=(x2+2x+1)2(3x4+6x3+3x2)−(2x4+2x3+2x+2x3+2)=(x2+2x+1)23x4+6x3+3x2−2x4−4x3−2x3−2x−2=(x2+2x+1)2x4+2x3+3x2−2x−2
注意
不要每次看到商都使用商法则。有时候,先重写商使其形式更简化以便求导会更容易。例如,尽管可以使用商法则来求导函数
F
(
x
)
=
3
x
2
+
1
2
x
F(x) = \frac{3x^2 + 1}{2x}
F(x)=2x3x2+1,但更简单的方法是先进行除法,写成
F
(
x
)
=
3
x
2
2
x
+
1
2
x
=
3
x
2
+
1
2
x
F(x) = \frac{3x^2}{2x} + \frac{1}{2x} = \frac{3x}{2} + \frac{1}{2x}
F(x)=2x3x2+2x1=23x+2x1
然后再求导。
一般幂函数
商法则可以用来将幂法则扩展到指数为负整数的情况。
如果
n
n
n 是正整数,则
d
d
x
(
x
−
n
)
=
−
n
x
−
n
−
1
\frac{d}{dx}(x^{-n}) = -nx^{-n-1}
dxd(x−n)=−nx−n−1
证明
d
d
x
(
x
−
n
)
=
d
d
x
(
1
x
n
)
=
x
n
⋅
d
d
x
(
1
)
−
1
⋅
d
d
x
(
x
n
)
(
x
n
)
2
=
0
−
n
x
n
−
1
x
2
n
=
−
n
x
n
−
1
x
2
n
=
−
n
x
−
n
−
1
\begin{align*}\frac{d}{dx}(x^{-n}) &= \frac{d}{dx}\left(\frac{1}{x^n}\right) \\ &= \frac{x^n \cdot \frac{d}{dx}(1) - 1 \cdot \frac{d}{dx}(x^n)}{(x^n)^2} = \frac{0 - nx^{n-1}}{x^{2n}} \\ &= -n \frac{x^{n-1}}{x^{2n}} = -n x^{-n-1}\end{align*}
dxd(x−n)=dxd(xn1)=(xn)2xn⋅dxd(1)−1⋅dxd(xn)=x2n0−nxn−1=−nx2nxn−1=−nx−n−1
例子 8
(a) 如果
y
=
1
x
y = \frac{1}{x}
y=x1,则
d
y
d
x
=
d
d
x
(
x
−
1
)
=
−
x
−
2
=
−
1
x
2
\frac{dy}{dx} = \frac{d}{dx}(x^{-1}) = -x^{-2} = -\frac{1}{x^2}
dxdy=dxd(x−1)=−x−2=−x21
(b) d d t ( 6 t 3 ) = 6 d d t ( t − 3 ) = 6 ⋅ ( − 3 t − 4 ) = − 18 t − 4 \frac{d}{dt}\left(\frac{6}{t^3}\right) = 6 \frac{d}{dt}(t^{-3}) = 6 \cdot (-3t^{-4}) = -18t^{-4} dtd(t36)=6dtd(t−3)=6⋅(−3t−4)=−18t−4
到目前为止,我们知道当指数
n
n
n 是正整数或负整数时,幂法则成立。如果
n
=
0
n = 0
n=0,则
x
0
=
1
x^0 = 1
x0=1,其导数为
0
0
0。因此,幂法则对任何整数
n
n
n 都成立。那么如果指数是分数呢?在前面章节得例子中,我们发现
d
d
x
(
x
1
/
2
)
=
1
2
x
−
1
/
2
\frac{d}{dx}(x^{1/2}) = \frac{1}{2}x^{-1/2}
dxd(x1/2)=21x−1/2
这表明幂法则在
n
=
1
/
2
n = 1/2
n=1/2 时也成立。事实上,它对任何实数
n
n
n 都成立,我们将在后面的章节中证明这一点。
幂法则(一般版本)
如果
n
n
n 是任意实数,则
d
d
x
(
x
n
)
=
n
x
n
−
1
\frac{d}{dx}(x^n) = nx^{n-1}
dxd(xn)=nxn−1
例子 9
(a) 如果
f
(
x
)
=
x
π
f(x) = x^{\pi}
f(x)=xπ,则
f
′
(
x
)
=
π
x
π
−
1
f'(x) = \pi x^{\pi - 1}
f′(x)=πxπ−1
(b) 如果
y
=
1
3
x
2
y = \frac{1}{3x^2}
y=3x21,则
d
y
d
x
=
d
d
x
(
3
−
1
x
−
2
)
=
3
−
1
⋅
−
2
x
−
3
=
−
2
3
x
3
\frac{dy}{dx} = \frac{d}{dx}(3^{-1}x^{-2}) = 3^{-1} \cdot -2x^{-3} = -\frac{2}{3x^3}
dxdy=dxd(3−1x−2)=3−1⋅−2x−3=−3x32
例子 10
求函数
f
(
t
)
=
t
a
+
b
t
f(t) = t \sqrt{a + bt}
f(t)=ta+bt 的导数。
解
使用乘积法则,我们有
f
′
(
t
)
=
t
d
d
t
(
a
+
b
t
)
+
a
+
b
t
d
d
t
(
t
)
f'(t) = t \frac{d}{dt}(\sqrt{a + bt}) + \sqrt{a + bt} \frac{d}{dt}(t)
f′(t)=tdtd(a+bt)+a+btdtd(t)
=
t
⋅
b
2
a
+
b
t
+
a
+
b
t
⋅
1
= t \cdot \frac{b}{2\sqrt{a + bt}} + \sqrt{a + bt} \cdot 1
=t⋅2a+btb+a+bt⋅1
=
b
t
2
a
+
b
t
+
a
+
b
t
= \frac{bt}{2\sqrt{a + bt}} + \sqrt{a + bt}
=2a+btbt+a+bt
微分法则使我们能够找到切线,而无需求助于导数的定义。它还使我们能够找到法线。曲线 C C C 在点 P P P 处的法线是通过 P P P 的与 P P P 处的切线垂直的线。(在光学研究中,需要考虑光线与透镜法线之间的角度。)
例子 11
求曲线
y
=
x
1
+
x
2
y = \frac{\sqrt{x}}{1 + x^2}
y=1+x2x 在点
(
1
,
1
2
)
(1, \frac{1}{2})
(1,21) 处的切线和法线的方程。
解
根据商法则,我们有
d
y
d
x
=
(
1
+
x
2
)
⋅
d
d
x
(
x
)
−
x
⋅
d
d
x
(
1
+
x
2
)
(
1
+
x
2
)
2
=
(
1
+
x
2
)
⋅
1
2
x
−
x
⋅
2
x
(
1
+
x
2
)
2
\frac{dy}{dx} = \frac{(1 + x^2) \cdot \frac{d}{dx}(\sqrt{x}) - \sqrt{x} \cdot \frac{d}{dx}(1 + x^2)}{(1 + x^2)^2} = \frac{(1 + x^2) \cdot \frac{1}{2\sqrt{x}} - \sqrt{x} \cdot 2x}{(1 + x^2)^2}
dxdy=(1+x2)2(1+x2)⋅dxd(x)−x⋅dxd(1+x2)=(1+x2)2(1+x2)⋅2x1−x⋅2x
简化得
d
y
d
x
=
1
+
x
2
2
x
−
2
x
x
(
1
+
x
2
)
2
=
1
+
x
2
−
4
x
2
2
x
(
1
+
x
2
)
2
=
1
−
3
x
2
2
x
(
1
+
x
2
)
2
=
1
−
3
x
2
2
x
(
1
+
x
2
)
2
\frac{dy}{dx} = \frac{\frac{1 + x^2}{2\sqrt{x}} - 2x\sqrt{x}}{(1 + x^2)^2} = \frac{\frac{1 + x^2 - 4x^2}{2\sqrt{x}}}{(1 + x^2)^2} = \frac{\frac{1 - 3x^2}{2\sqrt{x}}}{(1 + x^2)^2} = \frac{1 - 3x^2}{2\sqrt{x}(1 + x^2)^2}
dxdy=(1+x2)22x1+x2−2xx=(1+x2)22x1+x2−4x2=(1+x2)22x1−3x2=2x(1+x2)21−3x2
所以在点
(
1
,
1
2
)
(1, \frac{1}{2})
(1,21) 处切线的斜率是
d
y
d
x
∣
x
=
1
=
1
−
3
⋅
1
2
2
⋅
1
⋅
(
1
+
1
2
)
2
=
1
−
3
2
⋅
1
⋅
(
1
+
1
)
2
=
−
2
2
⋅
4
=
−
2
8
=
−
1
4
\left. \frac{dy}{dx} \right|_{x = 1} = \frac{1 - 3 \cdot 1^2}{2 \cdot \sqrt{1} \cdot (1 + 1^2)^2} = \frac{1 - 3}{2 \cdot 1 \cdot (1 + 1)^2} = \frac{-2}{2 \cdot 4} = \frac{-2}{8} = -\frac{1}{4}
dxdy
x=1=2⋅1⋅(1+12)21−3⋅12=2⋅1⋅(1+1)21−3=2⋅4−2=8−2=−41
我们使用点斜式来写在点
(
1
,
1
2
)
(1, \frac{1}{2})
(1,21) 处切线的方程:
y
−
1
2
=
−
1
4
(
x
−
1
)
或
y
=
−
1
4
x
+
3
4
y - \frac{1}{2} = -\frac{1}{4}(x - 1) \quad \text{或} \quad y = -\frac{1}{4}x + \frac{3}{4}
y−21=−41(x−1)或y=−41x+43
在点
(
1
,
1
2
)
(1, \frac{1}{2})
(1,21) 处法线的斜率是
−
1
4
-\frac{1}{4}
−41 的负倒数,即 4,因此法线的方程是
y
−
1
2
=
4
(
x
−
1
)
或
y
=
4
x
−
7
2
y - \frac{1}{2} = 4(x - 1) \quad \text{或} \quad y = 4x - \frac{7}{2}
y−21=4(x−1)或y=4x−27
曲线及其切线和法线如图所示。
例子 12
双曲线
x
y
=
12
xy = 12
xy=12 上的哪些点处的切线与直线
3
x
+
y
=
0
3x + y = 0
3x+y=0 平行?
解
由于
x
y
=
12
xy = 12
xy=12 可以写成
y
=
12
x
y = \frac{12}{x}
y=x12,我们有
d
y
d
x
=
d
d
x
(
12
x
)
=
12
⋅
d
d
x
(
x
−
1
)
=
12
⋅
(
−
x
−
2
)
=
−
12
x
2
\frac{dy}{dx} = \frac{d}{dx} \left( \frac{12}{x} \right) = 12 \cdot \frac{d}{dx} \left( x^{-1} \right) = 12 \cdot (-x^{-2}) = -\frac{12}{x^2}
dxdy=dxd(x12)=12⋅dxd(x−1)=12⋅(−x−2)=−x212
令所求点的
x
x
x 坐标为
a
a
a,则切线的斜率为
−
12
a
2
-\frac{12}{a^2}
−a212
切线与直线
3
x
+
y
=
0
3x + y = 0
3x+y=0 平行,这意味着两条直线的斜率相同。直线
3
x
+
y
=
0
3x + y = 0
3x+y=0 的斜率为
−
3
-3
−3。因此,
−
12
a
2
=
−
3
-\frac{12}{a^2} = -3
−a212=−3
解这个方程,我们得到
12
a
2
=
3
\frac{12}{a^2} = 3
a212=3
a
2
=
12
3
a^2 = \frac{12}{3}
a2=312
a
2
=
4
a^2 = 4
a2=4
a
=
2
或
a
=
−
2
a = 2 \quad \text{或} \quad a = -2
a=2或a=−2
因此, x x x 坐标为 2 2 2 或 − 2 -2 −2 的点上,切线与直线 3 x + y = 0 3x + y = 0 3x+y=0 平行。
对应的
y
y
y 坐标为:
当
a
=
2
a = 2
a=2 时,
y
=
12
2
=
6
y = \frac{12}{2} = 6
y=212=6,
当
a
=
−
2
a = -2
a=−2 时,
y
=
12
−
2
=
−
6
y = \frac{12}{-2} = -6
y=−212=−6。
所以切线与直线
3
x
+
y
=
0
3x + y = 0
3x+y=0 平行的点是
(
2
,
6
)
(2, 6)
(2,6) 和
(
−
2
,
−
6
)
(-2, -6)
(−2,−6)。
我们总结一下迄今为止学到的微分公式如下:
微分公式表
d d x ( c ) = 0 d d x ( x n ) = n x n − 1 d d x ( c f ) = c f ′ ( f + g ) ′ = f ′ + g ′ ( f − g ) ′ = f ′ − g ′ ( f g ) ′ = f g ′ + g f ′ ( f g ) ′ = g f ′ − f g ′ g 2 \begin{aligned} &\frac{d}{dx}(c) = 0 \\ &\frac{d}{dx}(x^n) = nx^{n-1} \\ &\frac{d}{dx}(cf) = c f' \\ &(f + g)' = f' + g' \\ &(f - g)' = f' - g' \\ &(f g)' = f g' + g f' \\ &\left(\frac{f}{g}\right)' = \frac{g f' - f g'}{g^2} \\ \end{aligned} dxd(c)=0dxd(xn)=nxn−1dxd(cf)=cf′(f+g)′=f′+g′(f−g)′=f′−g′(fg)′=fg′+gf′(gf)′=g2gf′−fg′