💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
提出了一种基于自注意力机制的CNN-BiGRU模型,用于短期电力负荷预测。该方法将历史负荷和气象数据作为输入,旨在建模和学习特征内部的动态变化规律。通过引入自注意力机制,模型能够通过映射加权和学习参数矩阵,赋予BiGRU模型的隐含状态不同的权重,从而减少历史信息的丢失并加强重要信息的影响。这种方法的独特之处在于,它结合了卷积神经网络(CNN)和双向门控循环单元(BiGRU),以捕捉输入数据中的时空特征,并利用自注意力机制来提高模型对关键信息的关注度,从而提高了负荷预测的准确性和鲁棒性。
在该方法中,CNN用于提取输入数据中的时空特征,而BiGRU则用于对序列数据进行建模。通过引入自注意力机制,模型可以根据输入数据的重要性动态地调整权重,从而更好地捕捉序列数据中的关键信息。这种结合了多种深度学习技术的方法,为短期电力负荷预测提供了一种全新的视角,有望在提高预测准确性的同时,也能更好地适应不同类型的负荷数据和气象变量。
通过实验和验证,该基于自注意力机制的CNN-BiGRU模型有望成为短期电力负荷预测领域的一种创新方法,为实际应用中的电力系统运行和调度提供更为可靠和精准的预测结果。这一研究成果对于电力行业和相关领域的发展具有重要的理论和实际意义,有望为未来的电力负荷预测研究提供新的思路和方法。平台:tensorflow2.x.keras
基于注意力机制的CNN-BiGRU短期电力负荷预测方法是一种结合了卷积神经网络(CNN)和双向门控循环单元(BiGRU)的模型,通过注意力机制来提高预测性能。该方法主要包括以下几个步骤:
1. 数据预处理:首先对历史电力负荷数据进行预处理,包括数据清洗、归一化等操作,以便于模型的训练和预测。
2. CNN特征提取:使用CNN来提取电力负荷数据的时空特征,通过卷积层和池化层来捕获数据的局部特征和全局特征。
3. BiGRU建模:将CNN提取的特征输入到双向门控循环单元(BiGRU)中进行建模,BiGRU可以有效地捕获时间序列数据的长期依赖关系。
4. 注意力机制:引入注意力机制来对BiGRU的输出进行加权,以便于模型能够更加关注重要的时间步,提高预测性能。
5. 预测与评估:使用训练好的模型对未来的电力负荷进行预测,并通过评估指标来评估模型的性能,如均方根误差(RMSE)、平均绝对误差(MAE)等。
通过以上步骤,基于注意力机制的CNN-BiGRU短期电力负荷预测方法可以有效地提高预测性能,对于电力系统的短期负荷预测具有重要的应用意义。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]梁宏涛,王莹,刘红菊,等.基于注意力机制的CNN-BiGRU短期光伏发电功率预测[J].计算机测量与控制, 2022(006):030.
[2]程艳,尧磊波,张光河,等.基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J].计算机研究与发展, 2020(012):057.