💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
卡尔曼滤波是一种递归滤波技术,用于估计动态系统的状态,特别适用于线性动态系统。它基于系统的动态模型和测量数据,通过递归地更新状态估计来提供对目标状态的最优估计。卡尔曼滤波假设系统的动态过程和观测过程都是线性的,同时假设噪声是高斯分布的。粒子滤波是一种非参数贝叶斯滤波方法,用于在非线性和非高斯系统中进行状态估计。它通过使用一组粒子(随机样本)来表示状态空间的后验分布,并通过重采样和权重更新来近似目标状态的后验分布。粒子滤波不依赖于线性模型或高斯假设,因此对于复杂的非线性系统和非高斯噪声效果很好。在实时物体跟踪中,该组合方法可以实现对目标的准确跟踪,并且能够适应不确定性和噪声的变化。通过融合卡尔曼滤波和粒子滤波的优势,可以在复杂环境下实现高效的实时目标跟踪,例如在自动驾驶、无人机导航、人体姿态跟踪等领域。
📚2 运行结果
主函数部分代码:
% Clear everything
close all;
clear all;
% Add path of functions (needed for OS X systems)
addpath(genpath('Image_Transformation'));
addpath(genpath('Kalman'));
addpath(genpath('Particles'));
%Video input file
v = VideoReader('Videos/Pinball.mov');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TUNING INITIALIZATION
% You can modify these parameters to inspect different approaches
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ENDING = 15; % Run the code until this frame (maximum is ENDING = 600)
% If set to 1, the MSE curve is obtain for that method. Set all methods to
% 1 to compare the performance of the three methods.
KALMAN = 1;
PARTICLES = 0;
BOTH = 0;
if ( PARTICLES + KALMAN + BOTH ) > 1
verbose = 1;
else
% verbose = 0 - No output
% verbose = 1 - Error plotting
% verbose = 2 - Real time video plotting
verbose = 2;
end
% OBSTACLES = 1 - Some occlusions are added to the original video, in order
% to measure the performance of the filter.
% OBSTACLES = 0 - Original video without occlusions is used
OBSTACLES = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DEFAULT PARAMETERS
% These parameters are to ensure correct visualization of the results. They
% should not be changed
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Variable to ensure correct representation of particles and estimated
% states
threshold_square = 30;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]赵海涛,岳希,唐聃,等.改进TransCenter的组合距离多目标跟踪方法[J/OL].计算机工程与应用:1-10[2024-04-29].http://kns.cnki.net/kcms/detail/11.2127.TP.20240423.1228.006.html.
[2]陈瑞东,秦会斌.多特征融合与Kalman滤波的CAMShift跟踪算法[J].计算机仿真,2024,41(03):200-205+236.