💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
文献来源:
摘要:
本文关注差分放大转发(D-AF)中继在多节点无线通信中的性能,其中通信环境为时变瑞利衰落信道。采用一阶自回归模型(AR1)来描述信道的时变特性。基于无线信道的二阶统计特性,提出了一组新的组合权重用于目的地的信号检测。提供了成对错误概率(PEP)的表达式,并用于获得近似的平均比特错误率(BER)。结果表明,系统的性能与直接及级联信道的自相关性相关,并且在高信噪比(SNR)区域存在一个不可避免的误差地板。与传统的组合方案相比,新的权重导致更好的性能。在不同的场景下进行计算机模拟以支持分析。
对于无线通信系统在提高质量和数据速率方面不断增加的需求,促使了多发射/接收天线的应用,从而产生了所谓的多输入-多输出(MIMO)系统。然而,对于移动设备来说,由于空间有限无法使多个天线对应的无线信道不相关,因此使用多天线并不切实可行。然而,这一限制通过合作通信技术[1],[2] 得到了解决,这种技术已被证明适用于许多无线系统和应用,如第三代合作伙伴计划长期演进、全球互操作微波接入、无线局域网、车车通信和无线传感器网络[3]–[7]。
合作通信利用了以下事实:由于网络中的其他用户在源传输数据期间也可以听取源的信号,它们可以在另一阶段将接收的数据转发到目的地以帮助源。因此,系统的整体多样性和性能将受益于利用其他用户的帮助构建的虚拟MIMO系统。根据中继利用的合作策略,中继网络被归类为解码转发方案或放大转发(AF)方案[8]中的一种。
在这些策略中,AF由于其中继功能的简单性而受到许多研究的关注。具体来说,中继的功能是将接收到的信号与固定或可变增益相乘,并将结果转发给接收端。为了方便起见,源-中继-目的地的整体信道被称为级联、等效或双瑞利通道。根据调制的类型,中继可能需要完整的或部分的信道状态信息(CSI)来确定放大因子。此外,目的地需要直接和级联信道的CSI来将接收到的信号进行组合以进行相干检测。
为了避免中继和目的地的信道估计,[9]–[12]中考虑了差分AF(D-AF)方案,它仅需要中继处信道的二阶统计数据。在没有瞬时CSI的情况下,基于二阶统计的一组固定权重被用来在中继-目的地和源-目的地链路上组合接收到的信号。然后,标准的差分检测被应用来恢复传输的符号。然而,所有先前的工作假设了一个慢衰落的情况,并显示D-AF的性能比其相干版本的性能差约3-4 dB。为了将来参考,我们将这种方案称为“传统差分检测”(CDD)。实际上,移动用户速度的增加导致快速时变信道(也称为时变选择性信道)。因此,在开发CDD时所做的典型假设,即两个连续信道使用的近似相等,已被违反。因此,重要的是考虑D-AF中继系统在更实际和一般的信道变化场景下的性能和稳健性。还应该提到,时变信道对相干AF中继网络性能的影响已在[13]和[14]中进行了研究。
本文研究了在快速时变雷利衰落信道中多中继网络的D-AF性能。我们将针对这种快速时变信道开发的检测方案称为“时变差分检测”(TVD)。源到中继(SR信道)、源到目的地(SD信道)和中继到目的地(RD信道)的信道根据Jakes模型持续变化[15]。根据节点相对于彼此的移动性,考虑了不同情况。直接信道采用一阶自回归模型(AR1)建模[16],[17]。此外,基于独立雷利衰落信道的AR1模型,提出了一个时间序列模型来描述级联信道的时变特性。使用理论和蒙特卡罗模拟验证了该模型的统计特性。考虑到信道变化的统计特性,提出了一种新的权重来组合多个信道上接收到的信号。由于使用固定组合权重分析所提出系统的性能太复杂(甚至是不可能的),分析了使用最优最大比组合(MRC)权重的系统性能,并将结果用作系统错误性能的下限。具体来说,获取了成对误差概率(PEP)并用于利用最近邻近似法近似平均比特错误率(BER)。结果表明,在高信噪比(SNR)区域存在错误地板。这样的错误地板可以近似确定,并且与直接和级联信道的自相关值相关。通过模拟结果支持了在不同衰落信道情景中的分析,并且表明所提出的权重下的TVD始终优于时选择信道中的CDD。
📚2 运行结果
部分代码:
% MPSK modulation
M=4;
Ns=1E5;% number of symbols
Ptot_dB=0:5:40;% SNR scan, total power in the network
Ptot=10.^(Ptot_dB/10);
N0=1; % noise variance
% number of Relays
R=2;
% channel distance between two consecutive channel uses
ch_dis=0; % 0 for block-by-block and R for symbol-by-symbol
% scenarios
vfsd=[.005,.05,.1];
vfsr=[.005,.05,.1];
vfrd=[.005,.005,.05];
% select the scenario
scenario=2;
% normalized Dopplers
fsd=vfsd(scenario);
fsr=vfsr(scenario);
frd=vfrd(scenario);
% auto-correlations
[alfa_sd,alfa]=auto_corr(fsd,fsr,frd,ch_dis);
% power allocation
[P0,Pi]=opt_pow(Ptot,fsd,fsr,frd,M,ch_dis,R);
c0=.5;
P0=c0*Ptot;
Pi=(1-c0)*Ptot./R;
Ai2= Pi./(P0+N0);
% CDD power allocation
if M==2, c0=.5; else c0=.5; end
P0_cdd=c0*Ptot;
Pi_cdd=(1-c0)*Ptot./R;
Ai2_cdd= Pi_cdd./(P0_cdd+N0);
% this loop scans the SNR range
for ind=1:length(Ptot)
nbits=0;%total number of info sent
err_cdd=0;% error counter for convential diff detection
err_tvd=0;% error counter for time-varying case
clc
Ptot_dB(ind)
% this loop keeps going to get a certain amount of errors
ERR_TH=100;
while err_cdd<ERR_TH || err_tvd<ERR_TH
% info bits
xb=bits(log2(M)*Ns);
%binary to MPSK
v=bin2mpsk(xb,M);
% DPSK modulation
s=diff_encoder(v);
Nd=length(s);
% S-D channel
hsd=flat_cos(Nd,fsd,ch_dis);
% S-R and R-D channels
for k=1:R
hsr(k,:)=flat_cos(Nd,fsr,ch_dis);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。