💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
时间重分配多同步挤压变换(TMSST)在旋转机械轴承故障诊断中的应用研究
💥1 概述
状态监测(CM)信号中的脉冲特征通常意味着旋转机器中存在缺陷。为了准确捕获CM信号中的脉冲分量,该文提出一种基于时间重分配同步挤压变换(TSST)的集中时频分析(TFA)方法。首先,探讨了TSST方法在处理强频变信号方面的局限性。其次,引入一种迭代程序来解决TSST时频表示模糊问题;还分析了迭代算法的收敛性。最后,提出了一种脉冲特征提取算法进行信号重建,有助于故障类型的准确诊断。本文利用仿真噪声污染信号和3组实验数据对所提方法的性能进行了评价。本文的结果证实,所提方法在处理脉冲类信号方面比其他TFA方法具有更好的性能。
这篇文章,作者最大的贡献在于如何去理解瞬态信号。对一些存在时间极短的瞬态信号,确实不再适合使用时域模型进行分析。然而,频域模型却不受此影响。后面的模态分解算法其实也很有趣。以时频掩码的方式重构信号,常用于语音信号处理,瞬态信号分析中比较罕见。
时间重分配多同步挤压变换(TMSST)在旋转机械轴承故障诊断中的应用研究
一、TMSST的定义与原理
时间重分配多同步挤压变换(Time-Reassigned Multisynchrosqueezing Transform, TMSST)是一种基于同步挤压变换(SST)的高分辨率时频分析技术。其核心在于通过多重迭代对信号的时频能量分布进行动态调整,以克服传统时频分析方法(如短时傅里叶变换、小波变换)的局限性。具体原理包括:
- 能量重分配机制:通过多次同步挤压操作,将时频平面上分散的能量重新聚集到信号的瞬时频率附近,显著提高时频图的能量集中度。
- 多尺度策略:采用不同中心频率或带宽的小波函数对信号进行多维度分解,结合时间重分配算法(Time Reassignment),优化频变信号的处理能力。
- 迭代优化:通过迭代算法修正时频表示的模糊问题,尤其在处理强频变或瞬态脉冲信号时,能够更精确地捕捉故障特征。
二、在轴承故障诊断中的应用场景与技术优势
轴承故障振动信号通常表现为周期性脉冲或瞬态冲击,且易受噪声干扰。TMSST在此类信号分析中的优势体现在:
- 高分辨率特征提取:
- 能够从强噪声背景中分离出微弱的故障脉冲信号,例如早期轴承内圈或外圈裂纹产生的冲击成分。
- 在变转速工况下,通过时频脊线提取技术,准确跟踪故障特征频率的瞬时变化。
- 复杂信号处理能力:
- 适用于多分量非平稳信号,例如同时存在气蚀和轴承损伤的复合故障场景,通过多次迭代压缩能量分散区域,分离不同故障模式。
- 算法鲁棒性:
- 相比传统SST,TMSST通过时间重分配减少舍入误差,提升对噪声和信号畸变的容错能力。
三、典型案例与实证研究
- 变转速轴承故障诊断:
青岛理工大学团队结合TMSST与双通道卷积神经网络(CNN),构建混合诊断模型。实验中,TMSST生成的时频图谱作为CNN输入,在变转速(0–1500 r/min)条件下,故障识别准确率超过95%,显著优于传统STFT和小波变换方法。 - 船用螺杆滑油泵气蚀与轴承复合故障分析:
中国舰船研究设计中心利用TMSST处理振动信号,成功区分气蚀引起的宽频冲击与轴承损伤的周期性脉冲,解决了传统包络谱分析难以分辨的问题。 - 弱信号增强与噪声抑制:
凯斯西储大学轴承数据集中,TMSST在信噪比(SNR)为-5 dB的强噪声环境下,仍能清晰提取外圈故障的时频特征,验证其对早期故障的敏感度。
四、技术局限性与改进方向
- 局限性:
- 计算复杂度高:多重迭代导致算法耗时较长,难以满足实时诊断需求。
- 参数依赖性:窗口函数选择、迭代次数等参数需经验调整,影响泛化能力。
- 改进方向:
- 混合模型优化:与轻量化深度学习模型(如MobileNet、SqueezeNet)结合,减少计算负担。
- 自适应参数设计:引入遗传算法或贝叶斯优化,自动匹配最佳分析参数。
- 多模态数据融合:联合振动信号、声发射信号和温度数据,提升诊断可靠性。
五、与传统方法的对比
方法 | 优势 | 局限性 |
---|---|---|
短时傅里叶变换(STFT) | 计算简单,适合准平稳信号 | 时频分辨率受海森堡测不准原理限制 |
小波包变换(WPT) | 多尺度分析,适合频带分离 | 对瞬态信号能量分散敏感 |
同步挤压变换(SST) | 能量集中度较高,适合缓慢频变信号 | 对快速频变信号适应性差 |
TMSST | 高分辨率、强噪声抑制、适合非平稳信号 | 计算复杂度高,参数调整复杂 |
六、未来研究方向
- 边缘计算集成:开发嵌入式TMSST算法,实现工业现场的实时诊断。
- 跨领域迁移应用:探索TMSST在齿轮箱、风电叶片等其他旋转机械故障诊断中的潜力。
- 物理模型驱动:结合轴承动力学模型,增强时频特征的可解释性。
七、结论
TMSST通过迭代能量重分配与多尺度分析,突破了传统时频方法的分辨率限制,成为旋转机械轴承故障诊断的有效工具。其与深度学习的结合进一步推动了智能诊断的发展,但在实时性和自适应参数优化方面仍需持续改进。未来,随着边缘计算和自适应算法的进步,TMSST有望在工业实践中发挥更广泛的作用。
📚2 运行结果
2.1 算例1
2.2 算例2
2.3 算例3
部分代码:
function som=integ2d(mat,x,y);
%INTEG2D Approximate 2-D integral.
% SOM=INTEG2D(MAT,X,Y) approximates the 2-D integral of
% matrix MAT according to abscissa X and ordinate Y.
%
% MAT : MxN matrix to be integrated
% X : N-row-vector indicating the abscissa integration path
% (default : 1:N)
% Y : M-column-vector indicating the ordinate integration path
% (default : 1:M)
% SOM : result of integration
%
% Example :
% S = altes(256,0.1,0.45,10000) ;
% [TFR,T,F] = tfrscalo(S,21:190,8,'auto') ;
% E = integ2d(TFR,T,F)
%
%
[M,N]=size(mat);
if nargin<1,
error('At least one parameter required');
elseif nargin==1,
x=1:N; y=(1:M)';
elseif nargin==2,
y=(1:M)';
end
[xr,xc]=size(x);
[yr,yc]=size(y);
if (xr>xc & xr~=1),
error('X must be a row-vector');
elseif (yc>yr & yc~=1),
error('Y must be a column-vector');
elseif (N~=xc),
error('MAT must have as many columns as X');
elseif (M~=yr),
error('MAT must have as many rows as Y');
end
mat = (sum(mat.').'-mat(:,1)/2-mat(:,N)/2).*(x(2)-x(1)) ;
dmat = mat(1:M-1)+mat(2:M) ;
dy = (y(2:M)-y(1:M-1))/2 ;
som = sum(dmat.*dy) ;
function [tfr] = LCT(x,c,fs,h);
% Linear Chirplet Transform
% x : Signal.
% c : Chirp Rate.
% fs : Sample Frequency.
% h : Window Function.
% tfr : Time-Frequency Representation.
% This program is free software; you can redistribute it and/or modify
% it according to your requirement.
[xrow,xcol] = size(x);
if (nargin < 3),
error('At least 3 parameter is required');
end;
N=xrow;
t=1:xrow;
[trow,tcol] = size(t);
[hrow,hcol]=size(h); Lh=(hrow-1)/2;
tt=(1:N)/fs;
tfr= zeros (N,tcol) ;
for icol=1:tcol,
ti= t(icol); tau=-min([round(N/2)-1,Lh,ti-1]):min([round(N/2)-1,Lh,xrow-ti]);
indices= rem(N+tau,N)+1;
rSig = x(ti+tau,1);
%rSig = Hilbert(real(rSig));
tfr(indices,icol)=rSig.*conj(h(Lh+1+tau)).*exp(-j * 2.0 * pi * (c/2) * (tt(ti+tau)-tt(icol)).^2)';
end;
tfr=fft(tfr);
tfr=tfr(1:round(end/2),:);
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]和虎,彭露,赵金刚,等.基于时间多重同步挤压W变换的高精度轴承故障诊断[J].科学技术与工程, 2022, 22(34):15142-15147.
[2]胡志峰.新颖的同步提取变换方法及在机械故障诊断中应用研究[D].南昌航空大学,2022.