【裂纹检测】检测和标记图片中的裂缝(Matlab代码实现)

      💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

裂纹检测与标记图片中的裂缝研究

一、裂纹检测的基本原理与技术方法

1.1 传统物理检测方法

二、基于图像处理的裂纹检测算法

2.1 传统图像处理技术

2.2 基于深度学习的算法

三、检测精度评估指标与标准

3.1 物理检测精度标准

3.2 算法性能指标

四、挑战与未来方向

五、结论

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

裂纹检测与标记图片中的裂缝研究


一、裂纹检测的基本原理与技术方法

裂纹检测技术根据原理可分为传统物理检测和基于图像处理/深度学习的智能检测两大类。

1.1 传统物理检测方法
  1. 视觉检测

    • 原理:通过肉眼或放大设备直接观察表面裂纹,适用于可见的宏观裂缝。
    • 优点:操作简单、成本低。
    • 缺点:依赖主观判断,无法检测微小或内部裂纹。
  2. 磁粉检测(MPI)

    • 原理:利用磁场使铁磁材料表面裂纹吸附磁粉形成可见痕迹。
    • 适用性:仅适用于铁磁材料,灵敏度高(表面及近表面裂纹)。
    • 限制:非磁性材料无效,操作复杂。
  3. 渗透检测

    • 原理:通过渗透液渗入裂纹,显像剂显示开口裂纹。
    • 适用性:表面光滑的复杂工件。
    • 缺点:对涂层表面效果差,渗透液可能有毒。
  4. 超声波检测

    • 原理:高频声波在材料内部反射,分析回波判断裂纹位置和深度。
    • 优势:可检测内部及深埋裂纹,适用于金属、复合材料等。
    • 挑战:需专业设备和操作人员,表面需平整。
  5. 激光散斑检测

    • 原理:利用激光干涉形成的散斑图案变化检测表面微变形。
    • 优势:非接触式,灵敏度高(纳米级裂纹)。
    • 缺点:设备成本高,操作复杂。

二、基于图像处理的裂纹检测算法
2.1 传统图像处理技术
  1. 预处理技术

    • 滤波去噪:中值滤波、小波变换。
    • 图像增强:脊波域增强、对比度拉伸。
  2. 边缘检测与分割

    • 算子方法:Sobel、Canny、Roberts算子。

    • 阈值分割:Otsu算法、自适应阈值。
    • 形态学处理:膨胀、腐蚀连接断裂裂缝。
  3. 参数计算

    • 骨架化:八邻域细化算法提取单像素骨架。
    • 长度/宽度计算:基于像素统计或曲线拟合。

局限性:易受光照、噪声干扰,对复杂背景(如水迹、划痕)鲁棒性差。

2.2 基于深度学习的算法
  1. 主流模型架构

    • 分类模型:ResNet、EfficientNet用于裂缝存在性判断。
    • 目标检测:YOLO系列、Faster R-CNN定位裂缝区域。
    • 语义分割:U-Net、DeepLab实现像素级提取。
  2. 创新技术

    • 迁移学习:预训练模型(如ResNet50)微调,减少数据需求。
    • 注意力机制:空间注意力提升特征聚焦能力。
    • 多尺度融合:结合不同层次特征增强检测鲁棒性。
    • 轻量化设计:EfficientNet优化计算效率,适配移动端。
  3. 性能对比

    • 精度:改进U-Net的mPA达90.08%,Attention-ResNet50-GA模型F1分数0.9983。
    • 速度:YOLOv5在无人机平台实现实时检测。

三、检测精度评估指标与标准
3.1 物理检测精度标准
  • 裂缝宽度:估读精度±0.001 mm。
  • 裂缝深度:误差≤±5%(深度<50 mm时误差±5 mm)。
  • 声时测量:相对误差≤±1.0%。
3.2 算法性能指标
  1. 分类/检测指标

  2. 分割指标

    • IoU(交并比) :
    • mIoU:多类别IoU平均值。
    • Kappa系数:衡量标注一致性。
  3. 实际案例

    • DeepCrack:F-measure达0.87。
    • 1D-CNN-LSTM:测试集准确率99.25%。

四、挑战与未来方向
  1. 当前挑战

    • 数据瓶颈:像素级标注数据集获取困难。
    • 复杂环境:光照变化、背景噪声影响算法鲁棒性。
    • 实时性:高分辨率图像处理速度不足。
  2. 未来趋势

    • 多模态融合:结合红外、超声等传感器数据提升检测维度。
    • 自监督学习:减少对标注数据的依赖。
    • 边缘计算:轻量化模型部署于无人机、移动设备。
    • 可解释性:突破“黑盒”限制,增强模型透明度。

五、结论

裂纹检测技术正从传统物理方法向智能化、自动化方向演进。深度学习(尤其是U-Net、YOLO等模型)显著提升了复杂环境下的检测精度,而开源工具与工业级系统(如无人机+深度学习)推动了实际应用。未来需在数据生成、模型轻量化及多模态融合方向持续突破,以实现更高效率、更低成本的裂缝健康监测。

📚2 运行结果

主函数部分代码:

clear all
close all
% clf
I=imread('exemple2.PNG');
Indg=rgb2gray(I); %NdG

[l,c]=size(Indg); %Taille matrice Indg


%----Lissage------------
G = fspecial('gaussian',[5 5],3); %creation filtre gaussien


IG = imfilter(Indg,G,'symmetric','same','conv'); %filtrage gaussien
%--------------------------

%------------Calcul du gradient-----
%Matrices grad
IX=zeros(l,c);%grad horizon
IY=zeros(l,c);%grad vert
IXY=zeros(l,c);%norme grad

%Sobel 3x3
for i=2:l-1
    for j=2:c-1
        IX(i,j)=-(-double(IG(i-1,j-1))-2*double(IG(i,j-1))-double(IG(i+1,j-1))+double(IG(i-1,j+1))+2*double(IG(i,j+1))+double(IG(i+1,j+1)))/8;
        IY(i,j)=-(-2*double(IG(i-1,j))+2*double(IG(i+1,j))-double(IG(i-1,j-1))+double(IG(i+1,j-1))-double(IG(i-1,j+1))+double(IG(i+1,j+1)))/8;
        IXY(i,j)=sqrt(((IX(i,j))^2)+((IY(i,j))^2));
    end
end

%-------Binarisation----
%Seuillage par hysteresis
Ibin=zeros(l,c);%binaire
Sh=8;
Sb=5;

for i=1:l
    for j=1:c
        
        if IXY(i,j)>=Sh %Seuil : gradient > Sh
            Ibin(i,j)=255;
           
        elseif IXY(i,j)<Sb %Seuil : gradient < Sb
            Ibin(i,j)=0;
        end
        
     end
end

for p=1:50
    for i=1:l
        for j=1:c
            if IXY(i,j)<Sh && IXY(i,j)>=Sb %Seuil : Sh > gradient > Sb
                % Extraction des 8 pixels voisins
                vect = [Ibin(i-1,j-1:j+1) Ibin(i, j-1) Ibin(i, j+1) Ibin(i+1,j-1:j+1)];
                if max(vect)==255
                    Ibin(i,j)=255;
                else
                    Ibin(i,j)=0;
                end
            end  
        end
    end
end  





%----------Identification des r間ions-----
[L,num]=bwlabel(Ibin,8);


t=regionprops(L, 'area'); %info sur les r間ions
taille=zeros(num,1);
for g=1:num
    taille(g,1)=t(g,1).Area(1,1);   %On extrait la taille des r間ions
end


%-----Effacement des petites r間ions------
Ifer=zeros(l,c);
for i=1:l
    for j=1:c
        for k=1

clear all
close all
% clf
I=imread('exemple2.PNG');
Indg=rgb2gray(I); %NdG

[l,c]=size(Indg); %Taille matrice Indg


%----Lissage------------
G = fspecial('gaussian',[5 5],3); %creation filtre gaussien


IG = imfilter(Indg,G,'symmetric','same','conv'); %filtrage gaussien
%--------------------------

%------------Calcul du gradient-----
%Matrices grad
IX=zeros(l,c);%grad horizon
IY=zeros(l,c);%grad vert
IXY=zeros(l,c);%norme grad

%Sobel 3x3
for i=2:l-1
    for j=2:c-1
        IX(i,j)=-(-double(IG(i-1,j-1))-2*double(IG(i,j-1))-double(IG(i+1,j-1))+double(IG(i-1,j+1))+2*double(IG(i,j+1))+double(IG(i+1,j+1)))/8;
        IY(i,j)=-(-2*double(IG(i-1,j))+2*double(IG(i+1,j))-double(IG(i-1,j-1))+double(IG(i+1,j-1))-double(IG(i-1,j+1))+double(IG(i+1,j+1)))/8;
        IXY(i,j)=sqrt(((IX(i,j))^2)+((IY(i,j))^2));
    end
end

%-------Binarisation----
%Seuillage par hysteresis
Ibin=zeros(l,c);%binaire
Sh=8;
Sb=5;

for i=1:l
    for j=1:c
        
        if IXY(i,j)>=Sh %Seuil : gradient > Sh
            Ibin(i,j)=255;
           
        elseif IXY(i,j)<Sb %Seuil : gradient < Sb
            Ibin(i,j)=0;
        end
        
     end
end

for p=1:50
    for i=1:l
        for j=1:c
            if IXY(i,j)<Sh && IXY(i,j)>=Sb %Seuil : Sh > gradient > Sb
                % Extraction des 8 pixels voisins
                vect = [Ibin(i-1,j-1:j+1) Ibin(i, j-1) Ibin(i, j+1) Ibin(i+1,j-1:j+1)];
                if max(vect)==255
                    Ibin(i,j)=255;
                else
                    Ibin(i,j)=0;
                end
            end  
        end
    end
end  

%----------Identification des r間ions-----
[L,num]=bwlabel(Ibin,8);


t=regionprops(L, 'area'); %info sur les r間ions
taille=zeros(num,1);
for g=1:num
    taille(g,1)=t(g,1).Area(1,1);   %On extrait la taille des r間ions
end


%-----Effacement des petites r間ions------
Ifer=zeros(l,c);
for i=1:l
    for j=1:c
        for k=1
 

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]郭怡,吴琼.可视化图像处理下船体表面微裂痕高效检测算法[J].舰船科学技术,2021,43(18):1-3.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值