基于节点导纳矩阵的三相配电系统建模(Matlab实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、节点导纳矩阵的基本原理与特点

1. 定义与物理意义

2. 核心特性

3. 应用场景

二、三相配电系统的结构特点

1. 电源与负载特性

2. 接线方式

3. 不平衡问题

三、三相系统节点导纳矩阵的构建方法

1. 元件建模

2. 矩阵构建步骤

3. 特殊处理技术

四、建模中的挑战与解决方案

1. 挑战

2. 解决方案

五、研究案例与应用

1. 仿真验证

2. 实际应用

六、未来发展方向

结论

📚2 运行结果

2.1 IEEE 37节点测试

2.2 EEE 123 节点测试

2.3 500 节点测试

2.4 906 母线低压馈线

2.5 小节 

🎉3 参考文献 

🌈4 Matlab代码、数据下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

 本文的主要是适用于 Z-Bus 潮流的三相配电系统建模。提供了星形和三角形恒功率、恒电流和恒阻抗负载的详细模型。布置了构建总线导纳矩阵 (Y-Bus) 的传输线、步进电压调节器和变压器的模型。然后审查 Z-Bus 负载流,并严格讨论在某些变压器连接情况下 Y-Bus 的奇异性。基于现实假设和常规修改,证明了 Y-Bus 的可逆性。最后但同样重要的是,提供了对 IEEE 37 节点、IEEE 123 节点、8500 节点馈线和欧洲 906 总线低压馈线组件进行建模的,在MATLAB 上运行。

准确构建的母线导纳矩阵(Y-Bus)能够捕捉到配电网的不平衡特性,是一些应用的基础,例如:(1)基于Newton-Raphson、电流注入法或Z-Bus法的三相负荷流;(2)使用内点法、半自由度或连续凸近似法的三相最优功率流(OPF)。(3)通过解的存在条件进行电压安全评估;(4)通过选择最佳调节器分接设置和最佳电容器开关重新配置进行最佳系统运行;以及(5)通过线性化三相功率流方程提供实时电压解决方案。为了促进三相配电系统的研究,如上述例子,并绕过单相的简化,本文汇集了配电网络元素的模型--有些是以前可用的,有些是新的,并构建了Y-Bus矩阵。Y-Bus矩阵包括三相输电线路、变压器和步进电压调节器(SVR)的模型。

三种常见步进电压调节器配置的 OLTAGE 增益、电流增益和阻抗矩阵如下:

         

基于节点导纳矩阵的三相配电系统建模研究是电力系统分析中的重要课题,其核心在于通过数学建模精确描述三相不平衡特性,并为潮流计算、故障分析和优化控制提供基础。以下从基本原理、结构特点、建模方法、挑战与解决方案、研究案例及未来发展方向进行详细阐述。


一、节点导纳矩阵的基本原理与特点

1. 定义与物理意义

节点导纳矩阵(Y-Matrix)是描述电力网络各节点电压与注入电流关系的线性方程组的系数矩阵,其数学形式为:

其中,Yn​为N×N导纳矩阵(NN为节点数),Un为节点电压列向量,In为节点注入电流列向量。其元素包括:

  • 自导纳(Yii) :节点ii所连支路导纳之和,反映节点自身的电气特性。
  • 互导纳(Yij) :节点ii与jj间支路导纳的负值,体现节点间的耦合作用。
2. 核心特性
  • 对称性:网络互易特性使得矩阵对称(Yij=Yji)。
  • 稀疏性:节点间直接连接的支路较少,非零元素占比通常低于10%(大型电网可低于1%),适合稀疏矩阵存储与计算优化。
  • 动态修正:支路增减或参数变化时,仅需局部修改矩阵元素,无需重构。
3. 应用场景
  • 潮流计算、短路分析、稳定性评估等。
  • 结合阻抗矩阵(\left(Z_{n}=Y_{n}^{-1}\right))分析故障电流分布。

二、三相配电系统的结构特点

1. 电源与负载特性
  • 对称三相电源:由三个幅值相等、相位差120°的正弦电压源组成,连接方式包括星形(Y)和三角形(Δ)。
  • 负载类型:可能为对称三相负载(如电动机)或不对称负载(如单相用户),需分相建模。
2. 接线方式
  • 三相四线制(Y-Y) :含中性线,适用于不平衡负载(如居民用电)。

  • 三相三线制(Δ-Δ或Y-Δ) :无中性线,适用于平衡工业负载。
3. 不平衡问题
  • 负载不均、线路参数差异及分布式电源接入导致三相电压/电流不平衡,需通过序分量法(正序、负序、零序)分解分析。

三、三相系统节点导纳矩阵的构建方法

1. 元件建模
  • 线路模型:采用三相π形等值电路,串联阻抗矩阵ZiZi​和对地导纳矩阵YiYi​均为3×33×3复数矩阵,体现相间耦合。
  • 变压器模型:基于连接组别(如Y-Δ)生成导纳矩阵,考虑变比与绕组耦合。
  • 负载模型:恒功率(PQ)、恒电流(PI)或恒阻抗(Z)模型,需分相注入功率或导纳。
2. 矩阵构建步骤
  1. 初始化:创建空导纳矩阵,维度为3N×3N3N×3N(每节点对应三相)。
  2. 元件贡献叠加
    • 线路导纳按相填充到对应节点位置。
    • 变压器导纳根据连接方式转换(如Y-Δ需序分量转换)。
    • 负载导纳按相注入对角元素。
  3. 稀疏优化:利用节点编号优化与压缩存储技术减少计算量。
3. 特殊处理技术
  • 序分量转换:通过对称分量法将三相不平衡问题分解为正序、负序、零序网络,简化计算。
  • 分块矩阵处理:将三相导纳矩阵分为子块(如每相导纳矩阵),利用并行计算加速。

四、建模中的挑战与解决方案

1. 挑战
  • 复杂度高:三相模型参数多(如互感、变压器连接方式),需精细建模。
  • 计算量大:矩阵维度高(3N×3N3N×3N),迭代求解耗时。
  • 数据需求严格:需详细的三相参数(如线路阻抗分相数据)。
2. 解决方案
  • 简化建模:对部分平衡系统采用对称分量法,减少变量数。
  • 稀疏技术:利用导纳矩阵稀疏性优化存储与计算。
  • 人工智能辅助:机器学习自动识别负荷类型,专家系统指导故障处理。

五、研究案例与应用

1. 仿真验证
  • IEEE标准系统:如IEEE 37节点、123节点系统,验证模型在潮流计算与故障分析中的精度。
  • 欧洲低压馈线:906总线系统测试三相不平衡条件下的电压稳定性。
2. 实际应用
  • Z-Bus潮流法:基于导纳矩阵逆矩阵直接求解节点电压,适用于辐射状配电网。
  • 贝叶斯分层模型:生成合成三相不平衡电网,支持规划与风险评估。

六、未来发展方向

  1. 高效算法:融合GPU并行计算与量子计算,提升大规模系统求解速度。
  2. 数据驱动建模:结合智能电表与PMU实时数据,动态更新导纳矩阵。
  3. 多物理场耦合:考虑热-电耦合、电力电子设备动态特性,拓展模型应用场景。
  4. 标准化与开源工具:推动三相建模工具(如Matlab/OpenDSS)的标准化与开源共享。

结论

基于节点导纳矩阵的三相配电系统建模通过精确刻画不平衡特性,为现代配电网分析提供了关键工具。尽管面临复杂度与计算效率的挑战,但通过稀疏优化、序分量转换及人工智能技术的引入,其应用前景广阔。未来研究需进一步结合实测数据与多学科方法,推动三相建模在智能配电网中的深度应用。

📚2 运行结果

2.1 IEEE 37节点测试

IEEE 37 母线馈线具有以下相当独特的特性: (1) delta-delta 变电站变压器,额定 2500 kVA,230 kV/4.8 kV 线对线,zt = (2 + j8)%,在边缘 (1, 2) 上; (2) delta-delta 变压器,额定 500 kVA,4.8 kV/0.48 kV 线对线,zt = 0.09 + j1.81%,在边缘 (24, 38); (3) 边缘 (2, 3) 上的开路三角 SVR,具有相对较高的阻抗 zt = j1%; (4) 各种三角形连接的恒功率、恒电流和恒阻抗负载。

SVR 的阻抗在本文第三部分获得的。 ε = 10−6|yt| 值对应的电压幅值图 1绘制了理想和非理想稳压器模型,其中母线 39 代表 SVR 的 n'。 本文提供的解决方案也提供了验证。计算解决方案与 本文 解决方案之间的最大电压幅度差异列于表 VI 中。从表 VI 可以推断,当 SVR 的串联阻抗较高时,为非理想 SVR 模型提供了更准确的结果。

图1 使用理想SVR(黑色方块)和非理想SVR(蓝色圆圈)从Z-Bus方法中获得的IEEE 37总线馈线电压曲线提供的电压曲线(红色十字)的对比。母线标签已被修改为代表从1开始的连续数字。


2.2 EEE 123 节点测试

EEE 123 总线测试馈线 IEEE 123 总线测试馈线具有 (1) 三相、两相和单相横向; (2) 四个星形连接的 SVR,即边沿 (1, 2) 上的 ID1 三相联动,边沿 (12, 13) 的 a 相上的 ID2,边沿 (28, 29) 的 a、c 相上的 ID3 ), 边沿三相上的 ID4 (75, 76); (3) delta-delta 变压器,额定 150 kVA 和 4.16 kV/0.48 kV 线对线,在边缘 (68, 69)。图 2 中提供了电压曲线,其中总线 127、128、129、130 分别是 ID 为 1、2、3、4 的 SVR 的 n'(图中的最后四个标记)。

图2 从 Z-Bus 方法(蓝色圆圈)获得的 IEEE 123 母线馈线电压曲线与基准提供的电压曲线(红十字)进行比较。总线标签已被修改以表示从开始的连续数字 


2.3 500 节点测试

2.4 906 母线低压馈线

欧洲 906 母线低压馈线ELV 馈线具有 (a) 三相支线(无缺相),和 (b) delta-wye 变电站变压器,额定 800 kVA,11 kV/416 V 线路在边缘 (1, 2) 上对齐,zt = (0.4+j4)%。获得的电压曲线如图 9 所示。


2.5 小节 

本文专注于三相配电网络的节点导纳建模。回顾了输电线路和大多数相关变压器连接的模型,同时推导出了步进电压调节器的新模型,明确考虑了它们的抽头位置和串联导纳。将系列元素的模型放在一起产生网络总线导纳矩阵 Y-Bus,其可逆性对于通过 Z-Bus 方法推导潮流解决方案至关重要。该论文仔细列出了保证 Y-Bus 可逆性的每个串联元件的条件,并证明了为什么先前关于修改某些变压器连接的提议可以恢复其可逆性。这些条件是根据实际配电网络量身定制的,这些配电网络可以是放射状或网状,具有任意数量的变压器和 SVR,并包括缺相。对 IEEE 37 节点、IEEE 123 节点、8500 节点中压馈线和欧洲 906 节点低压馈线进行了全面的数值测试。

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈Matlab代码、数据下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值