多旋翼无人机组合导航系统-多源信息融合算法(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

多旋翼无人机组合导航系统与多源信息融合算法研究

一、组合导航系统的定义与组成

二、多源信息融合算法的核心类型与原理

三、典型应用场景

四、研究案例与算法实现

五、性能评估指标

六、未来研究方向

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

多旋翼无人机组合导航系统与多源信息融合算法研究

多旋翼无人机已被广泛应用于军事与民用领域。导航系统是多旋翼无人机的重要组成部分,是其实现安全与稳定飞行的基础。采用INS/GPS组合导航系统可实现高精度导航,该组合导航系统具有优势互补、导航机构冗余的特点,其实质是一个多传感器导航信息优化处理系统。无人机的主要导航参数就是依靠多传感器信息融合获得的,因此信息融合技术是组合导航系统的关键技术,目前已成为国内外学者研究的热点问题。随着多旋翼无人机向自主化和智能化发展,多旋翼无人机对其自身导航系统的性能提出了更高的要求。但是受多旋翼无人机自身成本的制约,导航系统中选用的传感器精度较低。针对这一矛盾,本文提出将无人机自带的微型惯导系统与GPS通过信息融合技术相结合,构成INS/GPS组合导航系统,由此能够提升导航系统的整体性能。本文的研究工作围绕组合导航系统的设计展开。除此之外,本文以课题组自行研制的全新结构多旋翼小型无人机为研究平台,展开对机载多传感器组合导航系统信息融合这一关键技术的研究。

一、组合导航系统的定义与组成

多旋翼无人机组合导航系统是通过整合多种传感器(如GPS、IMU、磁力计、气压计等)构建的综合导航系统。其核心是以惯性导航系统(INS)为主,结合其他传感器实现优势互补。具体组成包括:

  • IMU(惯性测量单元) :提供姿态、角速度和加速度信息,但存在累积误差。
  • GPS/GNSS:提供全局位置和速度信息,但易受信号遮挡影响。
  • 磁力计:辅助测量航向,但受电磁干扰。
  • 气压计:测量高度,但受温度和环境压力波动影响。
  • 光流传感器/视觉传感器:在无GPS环境下提供相对位置和速度信息。
二、多源信息融合算法的核心类型与原理

多源信息融合算法根据处理层次分为三类:

  1. 数据级融合:直接融合原始数据,保留信息完整但实时性差,适用于同构传感器(如IMU与加速度计)。
  2. 特征级融合:提取特征后进行融合(如姿态角、速度),平衡精度与计算效率,适用于异构传感器。
  3. 决策级融合:融合各传感器的初步决策(如位置估计),容错性强但信息损失较大,常用于复杂环境。

常用算法

  • 卡尔曼滤波(KF) :处理线性系统,通过状态方程和观测方程优化估计,广泛应用于INS/GPS融合。
  • 扩展卡尔曼滤波(EKF) :针对非线性系统(如姿态解算),通过局部线性化处理非线性问题。
  • 粒子滤波(PF) :适用于非高斯、强非线性场景,但计算复杂度高。
  • 自适应滤波:动态调整噪声参数,增强鲁棒性(如Sage-Husa自适应EKF)。
  • 深度学习:通过神经网络处理复杂映射关系,提升环境适应性。
三、典型应用场景
  1. 近地面无GPS环境:融合光流、IMU和超声波传感器,解决建筑物遮挡导致的定位漂移问题。
  2. 隧道/室内巡检:结合激光雷达、UWB和视觉传感器,实现厘米级精度的自主避障与导航。

  3. 高空长航时任务:整合GNSS、IMU和视觉数据,动态补偿稀薄大气和电磁干扰的影响。
  4. 农业植保与测绘:融合多光谱相机、LiDAR和RTK-GPS,生成高精度三维地图。
  5. 动态环境适应性:通过联邦滤波结构,在GPS失效时快速切换至冗余传感器(如气压计+视觉里程计)。
四、研究案例与算法实现
  1. 多级融合架构(张欣,2015):
    • 第一级:陀螺仪+加速度计+磁力计,采用改进Sage-Husa自适应EKF融合姿态信息,抑制累积误差。
    • 第二级:加速度计+GPS,将加速度作为控制量输入状态方程,提升水平位置估计精度。
    • 第三级:气压计+GPS,引入联邦滤波和卡方检验,增强高度测量的容错性。
  2. 无GPS全自主飞行(荷清智能,2022):
    • 正交双雷达+视觉SLAM融合,解决长廊效应;
    • 滑模自抗扰控制算法提升复杂环境下的抗扰能力。
  3. Matlab仿真平台:基于EKF的INS/GPS融合代码实现,支持多传感器数据同步与误差分析。
五、性能评估指标
  1. 精度指标
    • RMSE(均方根误差) :评估位置/姿态估计与真实值的偏差。

    • MAE(平均绝对误差) :反映算法稳定性。
  2. 实时性指标
    • 处理延迟:从数据输入到输出结果的耗时,需满足无人机控制周期(通常≤10ms)。
    • 计算资源占用率:CPU/内存使用率,影响嵌入式系统部署可行性。
  3. 鲁棒性指标
    • 故障检测率:传感器失效时系统维持精度的能力(如GPS信号丢失后的定位误差增长速率)。
    • 环境适应性:在风速突变、电磁干扰等条件下的性能衰减测试。
  4. 综合指标
    • F1值:平衡精确率与召回率,用于目标跟踪场景。
    • NDCG(归一化折损累计增益) :评估多传感器数据排序的合理性。
六、未来研究方向
  1. 智能融合算法:结合强化学习动态优化传感器权重,提升环境自适应性。
  2. 新型传感器集成:毫米波雷达、量子惯性导航等技术的融合潜力。
  3. 边缘计算优化:通过FPGA/ASIC硬件加速,降低复杂算法(如粒子滤波)的功耗。
  4. 群体协同导航:多无人机间的信息共享与分布式融合,提升集群任务效率。

结论

多源信息融合算法通过有效整合多旋翼无人机的传感器数据,显著提升了导航系统的精度、鲁棒性和环境适应性。从基础滤波算法到深度学习模型的演进,体现了该领域的技术纵深。未来,随着新型传感器和边缘计算技术的发展,组合导航系统将向更高自主性、更低功耗的方向突破,为无人机在复杂场景中的应用提供坚实支撑。

📚2 运行结果

  

   

部分代码:

% load Uav true trajectory data.
addpath UavTrajectorySim;

disp(' ')
disp('Available UAV Truth Trajectory Data Files:')
dir_mat_files = dir('UavTrajectorySim\*.mat');
for nFile=1:length(dir_mat_files)
    fprintf('   %d: %s\n',nFile,dir_mat_files(nFile).name);
end
% nFileChoice = input('Choose a UAV Truth data file (e.g. 1<Enter>): ');
try
%     load(dir_mat_files(nFileChoice).name)
    load(dir_mat_files(1).name)
catch
    error('Selected UAV Truth Trajectory data file (%d) is invalid.\n',nFileChoice);
end

gvar_earth;

% 单次更新中使用的子样数
nn = 2;
% 采样时间
ts = 0.01;
nts = nn*ts;


% 初始姿态、速度、位置
att0 = [0, 0, 90]'*arcdeg;
vn0  = [0, 0, 0]';
pos0 = [34*arcdeg, 108*arcdeg, 100]'; % lattitude, longtitude, height
qbn0 = a2qua(att0);


% 姿态四元数、速度、位置
qbn = qbn0;
vn = vn0;
pos = pos0;

eth = earth(pos, vn);


% *** 添加误差 *** 
% 失准角
phi = [0.1, 0.2, 1]'*arcmin;
qbn = qaddphi(qbn, phi);

% 陀螺零偏,角度随机游走
eb_ref = [0.1, 0.15, 0.2]'*dph;
eb = [0.01, 0.015, 0.02]'*dph;
web = [0.001, 0.001, 0.001]'*dpsh;

% 加计零偏,速度随机游走
db_ref = [800, 900, 1000]'*ug;
db = [80, 90, 100]'*ug;
wdb = [1, 1, 1]'*ugpsHz;

Qk = diag([web', wdb', zeros(1, 9)]')^2*nts;

rk = [[0.1, 0.1, 0.1], [5/Re, 5/Re, 5]]';
Rk = diag(rk)^2;

% 协方差矩阵,x = [phi, delta_vn, delta_p, eb, db]
P0 = diag([[0.1, 0.1, 10]*arcdeg, [1, 1, 1], [10/Re, 10/Re, 10]...
           [0.1, 0.1, 0.1]*dph, [80, 90, 100]*ug]')^2;

% 量测矩阵
Hk = [zeros(6,3), eye(6), zeros(6, 6)];

% Kalman filter initialization
kf = kfinit(Qk, Rk, P0, zeros(15), Hk);

% 与模拟轨迹时长一致
kTime = fix(t_SD/ts);   
err = zeros(kTime, 10);
xkpk = zeros(kTime, 2*kf.n + 1);

pos_ref = zeros(kTime,3);
pos_est = zeros(kTime,3);
pos_gps = zeros(kTime,3);

kk = 1;
t = 0;
for k = 2 : nn : kTime
    t = t + nts;
    
    % 获取模拟轨迹对应的imu输出: 角增量和速度增量(参考值)
    wm(1:nn,:) = imu_SD.wm(k-nn+1:k,:);
    vm(1:nn,:) = imu_SD.vm(k-nn+1:k,:);
    
    % 为IMU参考输出添加噪声
    [wm1, vm1] = imuadderr(wm, vm, eb, web, db, wdb, ts);
    
    % 惯导更新:姿态四元数、速度、位置 
    [qbn, vn, pos, eth] = insupdate(qbn, vn, pos, wm1, vm1, ts);
    
    % 基于模型预测:导航误差系统模型卡尔曼滤波
    kf.Phikk_1 = eye(15) + kfft15(eth, q2mat(qbn), sum(vm1, 1)'/nts)*nts;
    kf = kfupdate(kf);
    
    % 模拟GPS量测数据
    gps = [avp_SD.vn(k,:)'; avp_SD.pos(k,:)'] + rk.*randn(6, 1);
    pos_gps(kk,:) = gps(4:6)';
    % 量测更新 5Hz
    if mod(t, 0.2) < nts
        Zk = [vn', pos']' - gps;
        kf = kfupdate(kf, Zk, 'M');
    end
    
    % Indirect Kalman filter:feedback to IMU (反馈校正法)
    qbn = qdelphi(qbn, kf.Xk(1:3));
    vn  = vn - kf.Xk(4:6);
    pos = pos - kf.Xk(7:9);
    pos_est(kk,:) = pos';
    % 反馈校正:由于反馈项的存在导致卡尔曼滤波的先验估计值始终为零. Ref: 王辰熙
    kf.Xk(1:3) = 0;
    kf.Xk(4:6) = 0;
    kf.Xk(7:9) = 0;
%     kf.Xk(10:12) = 0;
%     kf.Xk(13:15) = 0;
    
        
    % compute the error between estimation & truth data 
    % Note that this 'error' is not the 'state vector' in the Kalman equ. 
    % In indirect kalman filter, the 'state vector' means the error of 
    % the IMU update (respect to True data.)
    qbn_ref = a2qua(avp_SD.att(k,:));
    vn_ref = avp_SD.vn(k,:)';
    pos_ref(kk,:) = avp_SD.pos(k,:);
    err(kk, :) = [qq2phi(qbn, qbn_ref)', (vn - vn_ref)', (pos - pos_ref(kk,:)')', t];
    xkpk(kk, :) = [kf.Xk', diag(kf.Pk)', t]';

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]刘洪剑,王耀南,谭建豪,李树帅,钟杭.一种旋翼无人机组合导航系统设计及应用[J].传感技术学报,2017,30(02):331-336.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值