无人机航迹规划:红嘴蓝鹊优化器(Red-billed Blue Magpie Optimizer,RBMO)求解无人机路径规划,MATLAB代码

一、无人机模型介绍

单个无人机三维路径规划问题及其建模_无人机路径规划场景建模-CSDN博客

参考文献

[1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120

二、红嘴蓝鹊优化器求解无人机路径规划

红嘴蓝鹊优化器(Red-billed Blue Magpie Optimizer,RBMO)由Fu Shengwei 等人于2024年提出,其灵感来自红嘴蓝鹊的高效合作捕食行为,具体模拟了红嘴蓝鹊的搜索、追逐、攻击猎物和食物储存行为。

参考文献

[1]Fu, S., Li, K., Huang, H. et al. Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems. Artif Intell Rev 57, 134 (2024). Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems | Artificial Intelligence Review

close all
clear  
clc
addpath('./Algorithm/')%添加算法路径
warning off;
%% 三维路径规划模型定义
global startPos goalPos N
N=2;%待优化点的个数(可以修改)
startPos = [10, 10, 80]; %起点(可以修改)
goalPos = [80, 90, 150]; %终点(可以修改)
SearchAgents_no=30; % 种群大小(可以修改)
Function_name='F2'; %F1:随机产生地图 F2:导入固定地图
Max_iteration=50; %最大迭代次数(可以修改)
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_score,Best_pos,curve]=AlgorithmName(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);%算法优化求解
figure
semilogy(curve,'Color','g','linewidth',3)
xlabel('迭代次数');
ylabel('飞行路径长度');
legend(AlgorithmName)
display(['算法得到的最优适应度: ', num2str(Best_score)]); 
Position=[Best_pos(1:dim/3); Best_pos(1+dim/3:2*(dim/3)); Best_pos(1+(2*dim/3):end)]'; %优化点的XYZ坐标(每一行是一个点)
plotFigure(Best_pos,AlgorithmName)%画最优路径

无人机航迹坐标: 

   1.0000000e+01  1.0000000e+01  8.0000000e+01

  1.0293464e+01  1.1816243e+01  8.1985278e+01

  1.0631151e+01  1.3584174e+01  8.3936555e+01

  1.1011929e+01  1.5304872e+01  8.5854059e+01

  1.1434667e+01  1.6979417e+01  8.7738015e+01

  1.1898235e+01  1.8608887e+01  8.9588650e+01

  1.2401502e+01  2.0194364e+01  9.1406190e+01

  1.2943336e+01  2.1736925e+01  9.3190864e+01

  1.3522607e+01  2.3237651e+01  9.4942896e+01

  1.4138184e+01  2.4697621e+01  9.6662514e+01

  1.4788936e+01  2.6117915e+01  9.8349944e+01

  1.5473732e+01  2.7499612e+01  1.0000541e+02

  1.6191441e+01  2.8843791e+01  1.0162915e+02

  1.6940932e+01  3.0151533e+01  1.0322137e+02

  1.7721074e+01  3.1423917e+01  1.0478232e+02

  1.8530736e+01  3.2662022e+01  1.0631221e+02

  1.9368788e+01  3.3866928e+01  1.0781127e+02

  2.0234098e+01  3.5039714e+01  1.0927973e+02

  2.1125536e+01  3.6181460e+01  1.1071781e+02

  2.2041970e+01  3.7293245e+01  1.1212575e+02

  2.2982270e+01  3.8376150e+01  1.1350376e+02

  2.3945305e+01  3.9431253e+01  1.1485208e+02

  2.4929943e+01  4.0459633e+01  1.1617093e+02

  2.5935054e+01  4.1462371e+01  1.1746054e+02

  2.6959507e+01  4.2440547e+01  1.1872113e+02

  2.8002171e+01  4.3395238e+01  1.1995294e+02

  2.9061916e+01  4.4327526e+01  1.2115618e+02

  3.0137609e+01  4.5238489e+01  1.2233108e+02

  3.1228120e+01  4.6129208e+01  1.2347788e+02

  3.2332319e+01  4.7000761e+01  1.2459679e+02

  3.3449074e+01  4.7854228e+01  1.2568805e+02

  3.4577255e+01  4.8690689e+01  1.2675188e+02

  3.5715730e+01  4.9511223e+01  1.2778851e+02

  3.6863368e+01  5.0316910e+01  1.2879815e+02

  3.8019039e+01  5.1108829e+01  1.2978105e+02

  3.9181612e+01  5.1888059e+01  1.3073743e+02

  4.0349956e+01  5.2655681e+01  1.3166751e+02

  4.1522939e+01  5.3412774e+01  1.3257152e+02

  4.2699432e+01  5.4160417e+01  1.3344969e+02

  4.3878302e+01  5.4899690e+01  1.3430224e+02

  4.5058419e+01  5.5631673e+01  1.3512940e+02

  4.6238653e+01  5.6357444e+01  1.3593140e+02

  4.7417872e+01  5.7078083e+01  1.3670846e+02

  4.8594945e+01  5.7794671e+01  1.3746081e+02

  4.9768741e+01  5.8508286e+01  1.3818868e+02

  5.0938130e+01  5.9220008e+01  1.3889229e+02

  5.2101980e+01  5.9930916e+01  1.3957187e+02

  5.3259161e+01  6.0642091e+01  1.4022765e+02

  5.4408541e+01  6.1354611e+01  1.4085985e+02

  5.5548990e+01  6.2069556e+01  1.4146869e+02

  5.6679377e+01  6.2788006e+01  1.4205442e+02

  5.7798571e+01  6.3511040e+01  1.4261724e+02

  5.8905440e+01  6.4239737e+01  1.4315740e+02

  5.9998855e+01  6.4975178e+01  1.4367511e+02

  6.1077683e+01  6.5718441e+01  1.4417061e+02

  6.2140795e+01  6.6470606e+01  1.4464411e+02

  6.3187059e+01  6.7232754e+01  1.4509585e+02

  6.4215344e+01  6.8005962e+01  1.4552605e+02

  6.5224520e+01  6.8791311e+01  1.4593494e+02

  6.6213455e+01  6.9589881e+01  1.4632274e+02

  6.7181018e+01  7.0402750e+01  1.4668969e+02

  6.8126079e+01  7.1230999e+01  1.4703600e+02

  6.9047507e+01  7.2075707e+01  1.4736191e+02

  6.9944170e+01  7.2937953e+01  1.4766764e+02

  7.0814938e+01  7.3818817e+01  1.4795342e+02

  7.1658680e+01  7.4719378e+01  1.4821948e+02

  7.2474265e+01  7.5640716e+01  1.4846603e+02

  7.3260562e+01  7.6583911e+01  1.4869332e+02

  7.4016440e+01  7.7550042e+01  1.4890156e+02

  7.4740768e+01  7.8540188e+01  1.4909098e+02

  7.5432415e+01  7.9555429e+01  1.4926181e+02

  7.6090250e+01  8.0596845e+01  1.4941427e+02

  7.6713143e+01  8.1665515e+01  1.4954859e+02

  7.7299962e+01  8.2762519e+01  1.4966500e+02

  7.7849577e+01  8.3888936e+01  1.4976373e+02

  7.8360856e+01  8.5045845e+01  1.4984499e+02

  7.8832669e+01  8.6234327e+01  1.4990903e+02

  7.9263885e+01  8.7455460e+01  1.4995606e+02

  7.9653372e+01  8.8710325e+01  1.4998630e+02

  8.0000000e+01  9.0000000e+01  1.5000000e+02

三、完整MATLAB代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值