📖标题:MULTITRUST: A Comprehensive Benchmark Towards Trustworthy Multimodal Large Language Models
🌐来源:arXiv, 2406.07057
🌟摘要
🔸尽管多模态大型语言模型(MLLM)在各种任务中具有卓越的能力,但它们仍然面临着重大的可信度挑战。然而,目前关于评估可信赖MLLM的文献仍然有限,缺乏对未来改进的全面评估。
🔸在这项工作中,我们建立了MultiTrust,这是第一个全面统一的MLLM可信度基准,涵盖五个主要方面:真实性、安全性、稳健性、公平性和隐私性。我们的基准采用了一种严格的评估策略,既解决了多模态风险,也解决了跨模态影响,包括32个不同的任务和自我策划的数据集。
🔸对21个现代MLLM的广泛实验揭示了一些以前未被探索的可信度问题和风险,突显了多模态带来的复杂性,并强调了先进方法提高其可靠性的必要性。例如,典型的专有模型仍然难以理解视觉上令人困惑的图像,并且容易受到多模式越狱和对抗性攻击;MLLM更倾向于在文本中披露隐私,即使在推理中与无关的图像配对,也会揭示意识形态和文化偏见,这表明多模态放大了基础LLM的内部风险。
🔸此外,我们发布了一个可扩展的工具箱&#