一、为什么需要掩码
在 Transformer 模型的解码器中,使用掩码(mask)来计算注意力得分是为了确保自回归(autoregressive)生成过程中的因果性(causality)。具体来说,这种掩码称为“未来遮挡掩码”(future mask 或 look-ahead mask),它的目的是防止解码器在生成每个位置的输出时访问到该位置之后的目标序列信息,从而保证每个位置只能看到当前和之前的位置。
在自回归生成任务(如语言模型生成、机器翻译)中,解码器需要逐步生成输出序列的每一个元素。生成过程中的每一步都应该只依赖于之前生成的元素,而不能看见未来的元素。否则,模型会在训练时作弊,看到完整的序列,而在推理时却没有这种能力,导致不一致。
二、掩码的具体实现
掩码的具体实现是在计算自注意力得分时,将未来位置的注意力得分设置为负无穷大(或非常大的负值),从而在应用 softmax 函数时将这些位置的注意力权重置为零。
假设解码器的输入序列长度为 \( L \),未来遮挡掩码是一个形状为 \( (L, L) \) 的矩阵,其中上三角部分(不包括对角线)被设置为负无穷大,对角线及下三角部分为零。
实现细节
1. 生成掩码矩阵:生成一个上三角矩阵,并将上三角部分设置为负无穷大。
2. 应用掩码:在计算注意力得分时,将掩码矩阵加到未归一化的注意力得分矩阵上。
3. 归