AlphaFold2在线预测蛋白保姆式教程

AlphaFold2在线预测蛋白

colab 提供了一个网页接口可以调用alphafold预测蛋白结构

前提条件:

自己能访问到外网,并且有谷歌账号

1、访问下面地址:

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb

2、在query_sequence中输入自己的蛋白序列。

在这里插入图片描述

测单个蛋白序列直接输入就行,多个蛋白序列需要用冒号(:)来连接。

比如我的是这2个蛋白序列:

erIN:

MSDFDENFIEMTSYWAPPSSPSPRTILAMLEQTDNGLNPISEIFPQESLPRDHTDQSG

AGL88:

MVKKSKGRQKIEMVKMKNESNLQVTFSKRRSGLFKKASELCTLCGAEVAIVVFSPGR

在query_sequence中 输入内容就是这样的:

MSDFDENFIEMTSYWAPPSSPSPRTILAMLEQTDNGLNPISEIFPQESLPRDHTDQSG:MVKKSKGRQKIEMVKMKNESNLQVTFSKRRSGLFKKASELCTLCGAEVAIVVFSPGR

注:erIN和AGL88 用冒号:来连接!!!!

在这里插入图片描述3、然后点击运行->全部运行,大约30min-1hour可以完成计算,会显示自己的序列图
在这里插入图片描述在这里插入图片描述

在这里插入图片描述4、最后最后会自己下载压缩文件给你。

在这里插入图片描述

今天的分享就到这里了。有收获的小伙伴,记得点赞、收藏、分享哦!

如果您对本次分享的内容感兴趣的话,记得关注关注哦!不然下次找不到喽!
关注不迷路哦!

“好记性不如烂笔头”,IT小本本 —— 记录IT知识,分享打工人真实的日常操作笔记!!!
😝有需要的小伙伴,可以V扫描下方二维码免费关注哦!

在这里插入图片描述

### AlphaFold2 使用教程 #### 安装与配置 为了在Linux上本地安装并配置AlphaFold2,而不使用Docker容器,可以遵循以下指导。 ##### 数据库下载 运行AlphaFold2需要特定的数据库支持。这些数据库可以从多个途径获得: - **官方渠道**:访问Alphafold官方网站获取最新版本的数据资源[^1]。 - **自动化脚本辅助下载**:利用参考文献中提到的一个Python脚本来简化这一过程。 - **手动下载链接**:直接从给定的URL地址逐一下载必要的文件至本地存储设备。 ##### Conda环境搭建 建立专门用于AlphaFold2操作的Conda虚拟环境至关重要。这一步骤涉及创建新的环境以及安装一系列必需软件包: - 创建一个新的Conda环境来隔离不同项目的依赖关系。 ```bash conda create -n alphafold python=3.8 ``` - 激活新创建的环境,并开始安装各种依赖项,特别是那些不易引发冲突的基础库和可能引起麻烦的关键组件如`jax`及其扩展库`jaxlib`。 ```bash conda activate alphafold pip install numpy scipy tensorflow==2.5.0 jax jaxlib ``` ##### 获取AlphaFold2源码及相关资料 接下来是从GitHub克隆AlphaFold2项目仓库,并确保所有额外的支持性文档都被正确放置于相应位置: - 通过Git工具拉取AlphaFold2官方发布的v2.3.1版次代码库。 ```bash git clone https://github.com/deepmind/alphafold.git cd alphafold ``` - 将化学特性描述符等补充信息存入`common`子目录内以便后续调用。 #### 测试与验证 完成上述准备工作之后,应该尝试执行一些简单的测试案例以确认整个系统的正常运作状态。如果一切顺利,则表明已经具备了启动实际蛋白质结构预测工作的条件;反之则需排查可能出现的问题直至解决为止。 #### 实际应用实例 最后,在正式投入使用前还需了解具体的操作流程。通常情况下只需要调整好预设参数并通过命令行提交待处理的任务即可发起计算作业。对于初次使用者来说,建议参照提供的Shell脚本(`run_alphafold.sh`)来进行初步探索。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值