应用光学笔记03---人眼和目视光学系统

人眼与目视光学系统配合时,相当于整个系统中的一个子光学系统。如下图为望远系统+人眼

一、人眼

1、人眼的光学结构 

        从光学角度看,人眼可以看作由镜头、底片和光阑三大部分组成,这三个部分恰好是一台照相机的组成。对于人眼的分析可以类比为一台照相机,能够自动调节。角膜、前室和晶状体相当于照相机镜头,视网膜和黄斑相当于感光底片,虹膜中心瞳孔直径可放大或缩小,相当于可变光阑。

 2、人眼的光学特性

        人眼近似看为一个共轴球面系统

1)基本定义

视轴(光轴):眼睛黄斑中心与眼睛光学系统的像方节点连线

视场:人眼观察范围。可达150°。头不动,能看清视轴中心6°-8°

 2)人眼的功能:视度调节和瞳孔调节

(1)视度调节

        随着物体距离改变,人眼自动晶状体前表面的半径。从而改变焦距,使像落在视网膜上。

 视度SD:上述过程中,人眼自动调节的量。视网膜相共轭的物面到眼睛距离的倒数SD=1/l(单位1/米)

明视距离:正常人眼在正常照明状态下的正常阅读距离。通常为眼睛前方250mmSD=1/(-0.25)=-4

近点:眼睛通过调节,肌肉收缩到最紧张距离时,能看清物体的最短距离

远点:眼睛完全放松时,能够看清物体的最远距离

最大调节范围=近点视度-远点视度

 (2)瞳孔调节

        虹膜可以自动改变瞳孔大小,以控制人眼的进光量。强光/白天,D=1\sim 2mm;夜晚D=8\sim 9mm。设计光学仪器时,仪器的出射瞳孔要和人眼瞳孔大小配合。

 3)分辨率

        两物点在视网膜上成俩个个像点,若两个像点距离较大,人眼能够分辨开两个像点;若两个像点距离小到一定程度,人眼可能分辨不出使两个像点。

        人眼视网膜由是神经细胞组成,包含有分锥状细胞和杆状细胞。如果两像点落在两个不相邻的视神经细胞上,它们之间的距离大于两视神经细胞,能够分清楚是两个像点。视神经细胞直径约为0.001 \sim 0.003mm,选取0.006mm在物空间所对应的张角,称为视角分辨率。

 视角分辨率:刚刚能被人眼分辨开的两物点之间的最小视角。

由无限远处物体理想像高公式y'=f\cdot tg\omega\omega_{min}=\frac{y_{min}'}{f}=\frac{-0.006mm}{-16.68mm} \cdot 206000'' \approx 60''

对线的分辨率10''(读10秒)

 二、目视光学仪器

        目视光学仪器是一类直接用于人眼观察的设备,例如望远镜、显微镜和瞄准镜等。因此它需要满足一些要求。

1、对目视光学仪器的共同要求

1)增大视角\left | \Gamma \right |>1

         用仪器观察物体时视网膜上的像高y_i'',与用人眼直接观察物体时视网膜上的像高y_e'之比,表示仪器的放大能力。用\Gamma表示。

视放大率:\Gamma=\frac{y_i'}{y_e'}=\frac{\pi' tg\omega_i}{\pi' tg\omega_e}=\frac{tg\omega_i}{tg\omega_e},通过仪器观察的视角正切与人眼直接观察时视角正切之比。

2)目视光学仪器所成的像位于无限远

        正常人眼在自然状态下,无限远物体成像在视网膜上,为避免人眼观察时眼睛疲劳,目视光学仪器所成的像也应该位于无限远。

2、放大镜和显微镜的工作原理

        下图为人眼观察眼睛前方距离l处高度为y的物体的示意图

根据几何关系可知,物体对人眼的张角tg\omega=\frac{y}{-l} \approx \omega

要求最小视角\omega=\frac{y_{min}}{-l} \geqslant0.0003rad(60'')

提高视角的途径:

减小物距l?物距需要大于近点,它的调节存在限制

提高物高y?跟我们分辨细微物点的出发点违背,但可以借助目视光学仪器将物高放大,再进一步通过人眼观察。

1)放大镜

放大镜:对近距离/小物体进行放大,供人眼观察的仪器

         位于放大镜物方焦点的物体经过放大镜后成一束平行光,此时tg\omega_{\text{yi}}=\frac{y}{f'},用人眼直接观察tg\omega_{\text{eye}}=\frac{y}{-l},为了让人眼观察,一般-l=250mm(明视距离)。由此视放大率为\Gamma =\frac{tg\omega_{\text{yi}}}{tg\omega_{\text{eye}}}=\frac{250}{f'}

        如果\Gamma>1,则要求f'<250mm,要提高放大镜的视放大率,就需要减小透镜焦距,但对于一个简单的单正透镜,由焦距公式\frac{1}{f'}=(n-1)(\frac{1}{r_1}-\frac{1}{r_2})-\frac{(n-1)d}{nr_1r_2}=-\frac{1}{f}可知,焦距越小,球面半径越小,加工难度越大,因此焦距不可能很小。

因此可以增大放大镜物方焦平面上的物高,由此设计了显微镜。

2)显微镜

工作原理:运用一组透镜先将物体放大成像在放大镜的物方焦点上,再通过放大镜放大供人眼观察。放大镜的“物”高增加了,人眼看到就是二次放大的像

物镜(objective):对着物体的透镜

目镜(eyepiece):对着人眼的透镜

光学筒长\Delta:从物镜像方焦平面到目镜物方焦平面的距离

用人眼直接观察tg\omega_{\text{eye}}=\frac{y}{250}

用显微镜观察的tg\omega_{\text{yi}}=\frac{y'}{f_{eye}'},运用牛顿公式\beta=\frac{y'}{y}=-\frac{f}{x}=-\frac{x'}{f'}可知\beta_{obj}=\frac{y'}{y}=\frac{-\Delta}{f_{obj}'},所以tg\omega_{\text{yi}}=-\frac{\Delta}{f_{obj}'f_{eye}'}y,视放大率

\Gamma =\frac{tg\omega_{\text{yi}}}{tg\omega_{\text{eye}}}=-\frac{250\Delta}{f_{obj}'f_{eye}'}=\frac{\Delta}{f_{obj}'} \cdot \frac{250}{f_{eye}'}=\beta_{obj} \cdot \Gamma_{eye}

显微镜的视放大率等于物镜的垂直放大率乘以目镜的视放大率

考虑理想光学系统组合像方焦距公式f'=-\frac{f_1'f_2'}{\Delta}有,\Gamma =-\frac{250\Delta}{f_{obj}'f_{eye}'}=\frac{250}{-\frac{f_{obj}'f_{eye}'}{\Delta}}=\frac{250}{f_{comb}'},形式上跟放大镜一样,所以显微镜可以看为一个复杂的放大镜。

3、望远镜的工作原理

        首先,运用一组透镜将无限远的物体成像在其像方焦平面处;随后,运用单个放大镜将其物方焦平面处的像成像在无穷远。第一组透镜的像方焦平面和放大镜的物方焦平面重合。

 对着物方的透镜为物镜(objective),对着人眼的透镜为目镜(eyepiece)。光学筒长\Delta=0

物镜的像方焦点和目镜的物方焦点重合

 

 视放大率\Gamma =\frac{tg\omega_{\text{yi}}}{tg\omega_{\text{eye}}} =\frac{tg\omega'}{tg\omega},由图知tg\omega=-\frac{y'}{f_{obj}'}tg\omega'=\frac{y'}{f_{eye}'},望远系统的视放大率

\Gamma =-\frac{f_{obj}'}{f_{eye}'}

要增大视角\left | \Gamma \right |>1,及要求\left | f_{obj}' \right |>\left | f_{eye}' \right |物镜的焦距大于目镜的焦距

\Gamma的正负号由物镜和目镜焦距的正负号决定,\Gamma>0\omega,\omega'同号,成正像;\Gamma<0\omega,\omega'异号,成倒像。

物镜和目镜的焦距均为正---开普勒望远镜

 \Gamma>0,成倒像。系统中存在实像,可安装分划板,进行测量和瞄准,常用于制作军用光学仪器

 物镜焦距为正,目镜焦距为负---伽利略望远镜

 \Gamma>0,成正像。系统中不存在实像,不能安装分划板,无法进行测量和瞄准,常用于观察。

 

对于轴上点发出的光线,望远系统的仪器视角就为物点发出光线的孔径角,人眼的视角就为系统出射光线的孔径角

角放大率定义\gamma=\frac{tgu'}{tgu},视放大率\Gamma =\frac{tg\omega_{\text{yi}}}{tg\omega_{\text{eye}}} =\frac{tgu'}{tgu}=\gamma

望远镜的角放大率不随共轭面的位置变化而变化,数值上等于视放大率\Gamma

根据垂轴放大率与角放大率的关系式\beta=\frac{1}{\gamma}, 望远镜的垂直放大率也不随共轭面的位置变化而变化,数值上等于视放大率的倒数\beta=\frac{y'}{y} =\frac{1}{\Gamma}=-\frac{f_{obj}'}{f_{eye}'}

入射光束大小D,出射光束大小D',望远镜\Gamma =\gamma=\frac{1}{\beta}=\frac{D}{D'}

4、目视光学仪器的调节

1)眼睛的缺陷和校正

        正常人眼在自然状态下,无限远物体成像在视网膜上,即像方焦点F'与视网重合

         正常人眼观察近距离物体时,依靠人眼视度调节可以将F'点前移,使像成在视网膜上。人眼能看清的最远距离称为远点,远点是人眼自然状态下与网膜像相共轭的物平面位置;人眼依靠调节能看清的最近距离称为近点

        其一,人眼中存在近视眼像方焦点在视网膜前方,无限远物不能成像在视网膜上近视眼看不清无限远目标,看到的最远距离(远点)有限。

近视程度:远点距离所对应的视度表示。医学上眼睛的度数与视度相对应,1视度=100°

近视眼校正---采用焦点等于远点距离的负透镜

        其二,人眼存在远视眼像方焦点在视网膜后方,依靠调节有可能看清无限远物体。

        远视眼的远点在眼睛后方,近点距离比正常人眼增加

远视眼校正---采用焦距等于远点距离的正透镜

2)目视光学仪器的视度调节

        以望远系统为例,正常眼观察时,物镜的像方焦点和目镜的物方焦点重合;近视眼观察时,需要将目镜靠近物镜移动,使得物镜的像方焦点位于目镜的物方焦点的右方;远视眼观察时,需要将目镜远离物镜移动,使得物镜的像方焦点位于目镜的物方焦点的左方。

         调节量的计算:我们一般通过调节目镜的方式对系统进行调节。因此根据牛顿公式xx'=ff'可以计算。

        其中,x就是目镜的调节量;x'为目镜的像距,即远点到像方焦点的距离,-x'=-l_{yuan}=\frac{1000}{SD}

因此利用牛顿公式可得x=\frac{-SD \cdot f_{eye}'^2}{1000}

        实际应用中,目镜的镜圈上刻有相应的视度值,转动目镜,实际就是调节视度。

5、双眼观察仪器

1)空间深度感觉和双眼立体视觉

        单眼判断远近:物高已知,根据视角判断;根据物体之间遮蔽关系和日光阴影;物体细节程度和空气透明度;眼睛调节紧张程度。

        闭上一只眼睛,试着给笔套上笔帽,即使小心翼翼地确认距离,但是还是很难办到。

立体视觉---体视

体视产生的原因是视差角不同的造成的。

        若A、B离眼睛距离相同,此时\alpha_A=\alpha_Bb_1,b_2都在a_1,a_2同侧;a_1b_1=a_2b_2。人眼观察A、B两点位于同一深度。

         若A、B离眼睛距离不同,第一种情况,b_1,b_2位于a_1,a_2两侧;第二种情况,b_1,b_2位于a_1,a_2同侧,但a_1b_1\neq a_2b_2。可以看到\alpha_A \neq \alpha_B,人眼产生了立体视觉。

        视差角之差的大小\Delta \alpha标志着物体远近差别的大小。 \Delta \alpha \leqslant 10''时,人眼就分不清A、B的远近区别,这一极限值\Delta \alpha_{min}称为体视锐度

体视半径:人眼有体视的最大距离l_{max}=1200m

        设A在无穷远,人眼刚好能区分B点不在无穷远处,\alpha_B-\alpha_A= \alpha_B=\Delta \alpha_{min}

l_{max}=\frac{b}{\Delta \alpha_{min}}=\frac{0.062}{10''}206000''=1200m 

体视误差:在体视范围内,对两物体是否处在同一空间深度判断的误差。\Delta l=8 \times 10^{-4} l^2(m),该式子仅适用于l<\frac{1}{10}l_{max}

         视差角等于双眼瞳距比观察距离\alpha=\frac{b}{l},对其两边同时取微分,并用差商代替微商则\Delta l=\Delta \alpha\frac{l^2}{b},把b=0.062m,\Delta \alpha =0.00005(10'')代入得\Delta l=8 \times 10^{-4} l^2(m)

2)双眼观察仪器

(1)体视放大率

  若人眼直接观察的视差角为\alpha_{eye},通过仪器后视差角放大为\alpha_{yi},则体视放大率定义为\Pi =\frac{\alpha_{yi}}{\alpha_{eye}}

人眼直接观察时,\alpha_{eye}=\frac{b}{l}

进入仪器物方视差角\alpha=\frac{B}{l},仪器像方的视差角\alpha_{yi}=\alpha'=\Gamma\alpha =\Gamma\frac{B}{l}

因此\Pi =\frac{\alpha_{yi}}{\alpha_{eye}}=\Gamma \frac{B}{b},人眼基线b=62mm,则\Pi =16\Gamma B

(2)体视误差

\Pi =\frac{\alpha_{yi}}{\alpha_{eye}}=\Gamma \frac{B}{b}\alpha_{yi}=\Pi\alpha_{eye}=\Gamma \frac{B}{b} \cdot \frac{b}{l}=\Gamma \frac{B}{l},对其两边取微分得dl=\frac{l^2}{\Gamma B}d\alpha_{yi}

从仪器像方进入人眼得最小视差角为10'',因此双眼观察仪器的体视误差为\Delta l_{yi}=5\times 10^{-5}\frac{l^2}{\Gamma B},人眼直接观察体视误差\Delta l_{eye}=\Delta \alpha\frac{l^2}{b}\frac{\Delta l_{yi}}{\Delta l_{eye}}=\frac{b}{B\Gamma }=\frac{1}{\Pi }。因此采用双眼观察仪器后体视误差减小

(3)双眼仪器的要求

左右光轴平行

左右两系统放大率一致

左右两系统不应该有像倾斜

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值