NHANES挖掘培训班来啦,就在4.20-21!
郑老师团队2024年NHANES公共数据库挖掘培训班,由浅入深,零基础可学,欢迎报名!
2024年4月4日,中南大学湘雅医院学者做了一项药靶孟德尔随机化,在《Aging Cell》(医学一区,IF=15.3)发表,题为:“Clinicopathologic characteristics and outcomes of prostate cancer incidentally discovered at the time of radical cystoprostatectomy: a population-based cohort study”!
衰老是一个多方面的过程,最终导致生物功能的退化。尽管引入了许多抗衰老策略,但它们的治疗效果往往不是最理想的。因此,发现新的靶点来减轻衰老的影响是至关重要的。
在这项研究中,研究者旨在找到可以调节衰老的关键蛋白质。首先,通过MR分析证明了蛋白质对衰老代理指标的因果效应,并通过另一个验证队列加强了这些结果。随后,反向因果关系检测、贝叶斯共定位分析、表型扫描和SMR分析进一步验证了我们的结论。最后,研究了代谢因子在候选蛋白与衰老关联中的中介作用。
主要研究结果
1.研究设计
2.孟德尔随机化分析探索衰老相关药物靶点
通过细致的筛选,我们在DECODE队列中鉴定出1553种蛋白质对应的1858个顺式pqtls,在Finnland队列中鉴定出1561种蛋白质对应的1739个顺式pqtls,在meta-cohort中鉴定出734种蛋白质对应的738个顺式pqtls。
为了进行方法分析,DECODE、Finnland和meta-cohort分别被分类为用于训练、重复和验证阶段的暴露数据集。在进行严格的Bonferroni校正阈值的MR分析后,我们在三个队列中确定了几种候选衰老蛋白。MR分析显示,蛋白质组与寿命(第90个存活百分位数)存在显著的因果关系。
其中,KDELC2、TYRO3、MAX、USP8与端粒长度呈正相关,而GSTO1、LCT、serinf1、ALDH2、POLI、MST1、GMPR2、PSMB4呈负相关。
此外,ECM1、EFEMP1和ISLR2可促进面部老化(FA),而B3GNT8和PLXNA1可预防FA。
至于FI,仅在Decode和FinnGen队列中,LANCL1和MST1与虚弱指数(FI)增加相关。
3.敏感性分析
Cochran's IVW Q检验表明,在我们的初步分析中,工具变量(IVs)没有明显的异质性。
MR-Egger从初步分析中截取的数据显示没有多效性的迹象。
我们还使用贝叶斯共定位来验证衰老特征和蛋白质表达之间共享因果遗传变异的可能性。结果确定了11个具有一致遗传变异的蛋白,特别是B3GNT8 (rs11670143)、ECM1 (rs61819393)、EFEMP1 (rs76032374)、ISLR2 (rs12898858)、MST1 (rs3749241)、LCT (rs3769012)、GMPR2 (rs34354104)、MAX (rs45604339)、USP8 (rs113527256)和PSMB4 (rs61818036)。
双向MR分析表明,除了GMPR2外,衰老对鉴定的蛋白质没有因果关系。
Steiger滤波的应用进一步证实了这种方向性关联,如表1所示。
综合表型检查显示,这10种蛋白与抑郁症、2型糖尿病、缺血性中风或其他已知的与衰老相关的危险因素之间没有关联。
SMR分析表明,这10种蛋白的表达水平与衰老相关表型有显著的因果关系。
4.中介孟德尔随机化分析
衰老通常与代谢改变有关。因此,我们假设蛋白质表达可能调节代谢物的运输或合成,改变循环小分子的浓度,最终导致衰老。来自GWAS的血清顺式- metqtl数据研究了来自欧洲队列的7824名成年人的452种循环代谢特征的遗传基础,使用色谱技术确定了这些特征。
在452个候选物中,我们确定了LCT与1,5- ag和X-12696之间以及LANCL1与Citrulline之间的强大因果关系。在接下来的阶段,我们利用三种代谢物的遗传工具探索了这些介质对衰老性状易感性的因果影响。这突出了1,5- ag的显著因果效应。
至关重要的是,暴露和介导的工具变量是不同的,在我们的两步MR分析中保持了独立的SNP关联。间接地,LCT通过1,5- ag浓度对TL的影响相当于- 0.005 (95% CI, - 0.010至0.002;p = 0.045),解释了48.4%的中介作用。
为了证明这一结果,我们评估了LCT在HDFs中的表达,发现在复制、UVA和Ras诱导的衰老细胞中,LCT的mRNA水平更高。此外,通过shRNA敲除LCT的表达后,HDFs的端粒长度增加,SA-β-gal阳性的HDFs数量显著减少,这证明抑制LCT的表达可以延缓衰老过程。
后记
本文可见的难度飙升,用到了很多的统计学方法,主要是孟德尔随机化,包括逆方差加权孟德尔随机化(MR-IVW)、双向孟德尔随机化、贝叶斯共定位分析、基于汇总数据的孟德尔随机化(SMR)、HEIDI检验和中介孟德尔随机化。
现在孟德尔随机化太火爆,方法也升级了,用简答的孟德尔可能不太好发了,郑老师开了一门高级孟德尔随机化课程,包含了多变量、药靶、中介孟德尔随机化,诸位不妨看看!
孟德尔随机化课程,入门到高级,郑老师团队主讲,一个月搞定,快速发表论文!
本公众提供各种科研服务了!
一、课程培训 2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10余门课。如果您有需求,不妨点击查看: 二、数据分析服务 浙江中医药大学郑老师团队接单各项医学研究数据分析的服务,提供高质量统计分析报告。有兴趣了解一下详情: |