挑战半天搞定一篇NHANES!10分钟教你解决数据清洗大难题!

NHANES数据库分析,一步一个坎。常规分析小半年,现在半天全部搞定!

标准的NHANES数据库分析步骤,包括数据下载整合——数据清洗——数据加权分三步,可以说各有各难点。

为了教大家如何用NHANES数据库,顺利完成一篇SCI论文,我们将推出"半天完成一篇NHANES数据库SCI论文“系列文章,手把手带你快速搞定分析!

本文是系列文章的第二篇:如何10分钟完成NHANES数据的清洗工作!

第一篇:零代码半小时搞定NHANES数据的下载与整合!

b5149153f667ec60a58521c3dbfa363c.gif

常规NHANES数据库数据清洗

877bd11a35afa0e461544f1d7c736d77.gif

按照常规的NHANES分析流程,在我们从官网下载一堆xpt格式文件后,需要修改变量名,合并不同数据集并进行数据纳排处理!

cc6466d3f46b83148d133eeed4e1fe86.png

但是郑老师开发的一站式NHANES数据下载与分析平台,选择变量后直接整合为数据集,大大减少了数据清洗的工作量!

NAHNES数据下载别浪费时间在xpt文件了!换个工具,下载整合一步到位!

因此,这里我们只需要根据研究目的,进行数据的纳排,筛选目标人群即可!

话不多说,下面带大家一起见证——10分钟搞定全部的数据纳排!

14232d415753e0811be2e4482f8516dd.gif

一站式NHANES数据库分析平台

48eeb08028d46c11f0d92fe626a13347.gif


浙江中医药大学统计老师郑卫军主持的NAHNES一站式下载分析平台,从下载到统计分析,居然半天就能搞定!

数据实时更新!与官网保持一致!

基于R语言成熟R包开发,统计准确有保障!

中英文切换使用,简直小白救星!

全部菜单式零代码操作,上手嘎嘎快!

我们在前面完成第1步数据下载,第2步数据整合后,平台自动跳转到"数据纳排"界面。

纳排步骤:选中变量——添加纳排条件——更新数据——下载数据

584a45a2ac7a1dcb518f5e3d9ecd976b.png

73828b9f3cbb1cd2703bc4e488c6bddc.png

如果对NHANES分析权重的计算规则不了解,平台还会帮你一键计算权重,可以说是非常贴心了!

平台的纳排设置支持数值型变量大小的限定,以及定性变量的纳入与排出!

e2cefdbc3d9b5ac1358cda756e1eb209.png

全部搞定后,就会得到一份带有指定权重的NAHNES数据集啦!变量均已合并整好,可以直接用于下一步分析!

779b943aac5e315931684c3bf565b869.png


到这里,我们的的分析数据集就已经准备完毕。

我们下一篇继续为大家介绍NHANES数据加权分析,同样使用平台快速实现!大家敬请期待!

关于这个NHANES数据分析平台

俗话说”十年磨一剑“,经过长时间的打磨,郑卫军老师统计团队最终推出这个NHANES数据分析平台。解决了大家在挖掘过程中,NHANES数据库下载难、分析难等常见问题,助力大家更快完成一篇高质量文章!

如有对该平台感兴趣的学友,赶紧联系我们,早买早享受吧!

网站使用费用

本在线平台售价2000元/年
(有购买其它郑老师统计课程的学员享受9折优惠

服务内容

✅买1年送1年,共2年的平台使用权限
✅平台后期会更新100多个NHANES综合性指标数据
✅提供1年期在线数据分析咨询

购买方式

  • 可以添加下方助教微信咨询详情,或搜索微信号:aq566665

  • 可开技术服务费、培训费、咨询费等发票;可出具课程学习通知,方便报销,可以对公转账。

9ac27ed32ef4fe4aa602a1c644c838d0.png

助教二维码,联系咨询

### 使用 Pandas 进行 NHANES 数据清洗 #### 加载所需库并读取数据 为了有效地进行 NHANES 数据的清洗工作,首先需要导入必要的 Python 库,并加载待处理的数据集。 ```python import pandas as pd import numpy as np # 假设 nhanes_data.csv 是下载好的 NHANES 数据文件路径 data = pd.read_csv('nhanes_data.csv') ``` #### 查看数据基本信息 了解数据的整体情况对于后续操作至关重要。通过 `head()`, `info()`, 和 `describe()` 函数可以快速获取这些信息。 ```python print(data.head()) # 显示前几行记录 print(data.info()) # 获取有关列的信息以及缺失值的数量 print(data.describe()) # 统计描述数值型特征 ``` #### 处理缺失值 NHANES 数据集中可能存在量的缺失值,在实际应用中通常采用删除含有量缺失值的观测或填补的方式解决这个问题。 - **删除法** 当某些变量存在过多无法补全的缺失时可以选择直接移除该列;如果某条观察有太多字段为空也可以考虑将其丢弃。 ```python # 删除特定比例以上缺失率的列 threshold_col = int(len(data)*0.7) # 设置阈值为总样本数的70% cleaned_df = data.dropna(axis=1, thresh=threshold_col) # 或者按照行来清理 cleaned_df = cleaned_df.dropna(how='any') ``` - **填充法** 针对少量可预测模式下的缺失,则可以通过均值/众数等方式来进行合理推测补充。 ```python from sklearn.impute import SimpleImputer imputer_mean = SimpleImputer(strategy="mean") # 对于连续型变量使用平均值填充 imputed_numeric_cols = imputer_mean.fit_transform(cleaned_df.select_dtypes(include=[np.number])) for col_name in list(cleaned_df.columns[cleaned_df.dtypes != 'object']): cleaned_df[col_name] = imputed_numeric_cols[:,list(cleaned_df.columns).index(col_name)] categorical_columns = cleaned_df.select_dtypes(['category', object]).columns.tolist() if categorical_columns: imputer_most_frequent = SimpleImputer(strategy="most_frequent") # 类别型变量用最频繁出现的那个类别代替NA imputed_categorical_cols = imputer_most_frequent.fit_transform(cleaned_df[categorical_columns]) for i,col in enumerate(categorical_columns): cleaned_df[col]=imputed_categorical_cols[:,i] ``` #### 解决重复项问题 有时同一个个体可能会因为录入错误等原因而多次出现在数据库里,这会影响最终分析结果的真实性。因此有必要去除完全相同的副本。 ```python cleaned_df_no_duplicates = cleaned_df.drop_duplicates(keep=False) ``` #### 调整异常值 识别并修正那些明显偏离正常范围内的极端值也是重要的一步。这里简单介绍一种基于箱线图原理的方法——IQR(四分位距),用于检测离群点并将它们替换为边界处的最最小合法值。 ```python def remove_outliers(df, column_names=None): Q1 = df.quantile(0.25) Q3 = df.quantile(0.75) IQR = Q3 - Q1 if not column_names: column_names = df.columns[df.dtypes.apply(lambda c: np.issubdtype(c, np.number))] mask = ~((df[column_names] < (Q1 - 1.5 * IQR)) | (df[column_names] > (Q3 + 1.5 * IQR))).any(axis=1) return df[mask] final_cleaned_df = remove_outliers(cleaned_df_no_duplicates) ``` #### 合并多个表格 如果有其他关联表单也需要加入进来一起做综合性的研究的话,那么就可以利用到之前提到过的 `merge()` 函数[^2]. ```python additional_info = pd.read_csv('extra_information.csv') merged_result = final_cleaned_df.merge(additional_info[['ID','ExtraInfo']], on=['ID']) ``` 完成上述步骤之后就得到了一份相对干净整洁可用于进一步探索性数据分析或是建模训练的基础资料集合了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值