NHANES又出新套路!中国学者联合机器学习+孟德尔随机化,双重加持拿高分SCI...

引言

今天分享的这篇文章的工作量简直卷到爆炸!

学者基于NHANES数据,采用多元线性回归和亚组分析来检验TyG指数与老年人抑郁症的关联,并通过机器学习模型评估了抑郁症预测因素的重要性。

在此基础上,还进一步采用孟德尔随机化探究探索BMI与抑郁症的因果关联。

抑郁症和认知功能障碍在老年人群中非常常见,并严重影响了他们的日常生活。已有研究表明,肥胖和代谢功能紊乱可能会影响老年人群的心理健康,但其与老年人抑郁症和认知功能障碍之间的关联尚不明确。

2025年,中国学者用NHANES数据库,在期刊Journal of Affective Disorders(医学top二区,IF=4.9)发表题为:“Exploring the triglyceride-glucose index's role in depression and cognitive dysfunction: Evidence from NHANES with machine learning support”的研究论文。

在该项研究中,研究团队基于机器学习和孟德尔随机化 ,探讨了老年人的血糖(TyG)指数、体重指数(BMI)与抑郁症和认知功能障碍之间的关联。

626c65da4444eb56510fa817e9ad2718.png

本公号回复“ 原文”即可获得文献PDF等资料。想用NHANES发文,看看这个可一键提取和分析数据的NHANES  Online平台!如感兴趣请联系郑老师团队,微信号:aq566665

研究团队基于NHANES数据库2011-2014年的数据,经过纳排,最终纳入1352名年龄60~79岁符合条件的参与者。所有参与者按照TyG的四分位数进行分组。

ef8fb86960852b63cc0d5dfedbd85abc.png

图1 研究人群筛选流程图

与之前报道TyG指数与抑郁症之间存在正相关的研究相反,在本研究的校正模型中,研究团队发现TyG指数与认知功能评分呈负相关(P< 0.05);

而在模型2中,发现TyG指数与抑郁评分呈正相关(P< 0.001)。

f1a9a82dbd34a4c2438e30df8da8702a.png

表1 老年人的TyG指数与抑郁和认知功能障碍的关系

在完全校正的亚组分析中,研究团队发现在肥胖个体(BMI ≥ 28)中,TyG指数增加100个单位与抑郁评分降低3.79分相关。

有趣的是,这一结果意外地与先前提出的“肥胖悖论”一致,拥有较高BMI的老人年可以通过能量储备或激素调节等机制降低患抑郁症的风险。

√机器学习法筛选抑郁症的关键预测因素

为了进一步阐明BMI、TyG指数和抑郁症之间的关系,研究团队构建了四种不同的机器学习模型和一个深度学习模型进行验证,并使用SHAP法筛选抑郁症的关键因素。

最终,预测性能最佳的Xgboost(AUC = 0.960)识别了BMI、TyG-BMI、性别和合并症(例如,哮喘、中风、肺气肿)作为抑郁症的关键决定因素。

dc7ccf867be7da7e993af065d67df762.png

表2 机器学习分析结果

此外,研究团队还使用孟德尔随机化(MR)探究BMI与抑郁症和认知功能障碍之间的因果关联。

结果显示,BMI与抑郁风险和认知功能障碍之间均呈负相关。除此之外,未检测到异质性或多效性的证据。

综上所述,本研究证实甘油三酯-葡萄糖(TyG)指数可以作为老年人心理认知健康的一个重要指标。

如果你也想快速分析NHANES数据库,郑老师的NHANES一对一统计服务课程了解一下!现在报名还会送一年的NHANES Online平台使用权,选题我们帮你参考,需要的指标我们帮你提取!

欢迎关注“公共数据库与孟德尔随机化”公众号,我们将持续为你提供NHANES数据库优秀文章的思路剖析和方法解读!

郑老师统计团队及公众号

全国较大的线上医学统计服务平台,专注于医学生、医护工作者学术研究统计支持,我们是你们统计助理!

我们提供以医学数据数据挖掘统计服务

①NAHANES:一二区论文占半数

②MIMIC:急诊数据分析与机器学习建模

③GBD:全球、中国各种疾病患病、死亡研究

孟德尔随机化:疾病的因果推断研究

同时我们提供上述数据库的挖掘的一对一指导

GBD、NHANES医学数据库挖掘1对1R语言指导

联系助教陈老师咨询(微信号sas555777

d04e7f753ecdbf7b9564de02662e2071.jpeg

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值