梯度下降算法主要通过哪两个控制因子实现最优参数选择?这两个因子分别起到什么作用?为什么计算损失函数最优值采用梯度下降算法而不是直接对损失函数求导数等于0时的最优解?如何判断梯度下降算法是否正确工作?

(1)梯度下降算法主要通过哪两个控制因子实现最优参数选择?这两个因子分别起到什么作用?

答:梯度下降算法有两个重要的控制因子:一个是步长,由学习率控制;一个是方向,由梯度指定。

1.在梯度下降算法中,步长决定了每一次迭代过程中,会往梯度下降的方向移动的距离。试想一下,如果步长很大,算法会在局部最优点附近来回跳动,不会收敛(如下图);但如果步长太短,算法每步的移动距离很短,就会导致算法收敛速度很慢。

2.梯度的意义从几何意义上讲,就是函数变化增加最快的地方。具体来说,对于函数f(x,y),在点(x0,y0),沿着梯度向量的方向就是(∂f/∂x0, ∂f/∂y0)T的方向是f(x,y)增加最快的地方。或者说,沿着梯度向量的方向,更加容易找到函数的最大值。反过来说,沿着梯度向量相反的方向,也就是 -(∂f/∂x0, ∂f/∂y0)T的方向,梯度减少最快,也就是更加容易找到函数的最小值。

(2)为什么计算损失函数最优值采用梯度下降算法而不是直接对损失函数求导数等于0时的最优解?

答:多维函数偏导为0并非是局部极值,偏导为零是该点为极值的必要不充分条件,所以极值为0不一定是极值,你求偏导为0是没有用的,求出来也未必是极值点。不管是直接令偏导等于0还是使用梯度下降,都无法解决损失函数为非凸函数时陷入局部最优的问题。之所以使用梯度下降而不直接令偏导等于0,是因为神经网络的损失函数大多没有解析解,就是说你无法显式地表示函数的偏导,所以只能通过数值求解的方法迭代地找到最优解(或者局部最优解)。

(3)如何判断梯度下降算法是否正确工作?

答:可以绘制一个α——J(θ)曲线图,通过图像判断是否正确工作。

对于一个足够小的学习率α,每次迭代后损失函数J(θ)都会下降

如果α过小,梯度下降的收敛速度很慢

如果α太大,损失函数可能不会在每次迭代都下降,甚至可能不收敛

选择使得J(θ)曲线快速下降的α值

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
动量因子是优化算法中的一个重要概念,它可以帮助优化算法更快地收敛到最优解。在介绍动量因子计算和Python实现之前,先来简单了解一下梯度下降和优化算法的概念。 梯度下降是一种常用的优化算法,它通过不断地调整模型参数来最小化损失函数。具体来说,梯度下降算法会根据损失函数的梯度方向来更新模型参数,使得损失函数不断减小,直到达到最小。 然而,梯度下降算法存在一些问题,比如容易陷入局部最优解、收敛速度慢等。为了解决这些问题,研究者们提出了一系列的优化算法,其中动量因子就是其中之一。 动量因子是一种在更新模型参数考虑历史梯度信息的方法,它可以帮助优化算法更快地收敛到最优解。具体来说,动量因子会保留历史梯度的一部分信息,并将其与当前梯度相加,从而更加平滑地更新模型参数。 动量因子计算可以通过以下公式来实现: ``` v = beta * v + (1 - beta) * grad theta = theta - alpha * v ``` 其中,`v`表示历史梯度信息,`beta`表示动量因子权重,`grad`表示当前梯度,`theta`表示模型参数,`alpha`表示学习率。 在Python中,可以通过以下代码来实现动量因子计算: ``` v = 0 beta = 0.9 alpha = 0.01 for i in range(num_iterations): grad = compute_gradient(X, y, theta) v = beta * v + (1 - beta) * grad theta = theta - alpha * v ``` 其中,`compute_gradient`函数用来计算当前梯度,`num_iterations`表示迭代次,`X`和`y`表示训练据,`theta`表示初始模型参数。 总之,动量因子是优化算法中的一个重要概念,它可以帮助优化算法更快地收敛到最优解。在Python中,可以通过简单的代码实现动量因子计算

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

平杨猪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值