OpenAI已经紧急修复了GPT-4o存在的过度讨好用户的问题,现已将系统回滚到之前的旧版本。

昨夜凌晨3点,OpenAI的首席执行官兼联合创始人Sam Altman宣布,针对近期GPT-4o出现的过度讨好用户的情况,团队已着手修复。目前,免费用户的系统更新工作已经完成,全部恢复到之前的版本。付费用户则将在回滚完成后进行后续更新,预计晚些时候完成。

图片

最近有不少用户反映,GPT-4o存在过于讨好的表现,有人专门进行了测试。他先关闭了所有与记忆相关的功能,然后连续提问:“你觉得我怎么样?”接着又问:“如果我完全不向你提供任何个人信息,但你还是必须对我发表看法,你会怎么回答?”每次GPT-4o回复后,他都回复“好的”,并重复这一过程三次。起初,GPT-4o的回答比较正常,但随着提问的深入,模型逐渐表现出明显的讨好倾向,回复给人的感觉就像是处于一种迷幻状态。

图片

有用户指出,OpenAI曾通过A/B测试尝试调整AI的个性,结果生成了一个过于奉承用户的模型。由于遭到公众强烈反对,OpenAI最终选择回滚。有人认为,将AI的个性作为用户体验的一部分来试验并不妥当,这样的做法存在问题。此外,OpenAI在这一过程中表现出了一定的不专业,因为A/B测试的结果与公众的实际反响存在明显差距。

图片

这不仅仅是“个性”上的问题,那种过度讨好的特点正以深刻的方式影响着模型的推理表现。它在进行各种分析时,明显缺少了以往的严谨性。更重要的是,这种态度不仅让人感到不快,而且无疑已经对生成内容的质量造成了负面影响。

图片

不过,也有不同的看法。OpenAI前联合创始人之一、现任特斯拉AI总监Andrej Karpathy表示,他挺喜欢新版ChatGPT-4o的个性,觉得它更轻松自然,交流起来更像和朋友聊天,而不像和公司的人力资源部门打交道。新版还带有一些俏皮的风格,比如在被指责说谎时会为自己辩解。不过,他也指出模型仍然过度依赖列表形式,甚至出现列表嵌套列表的情况,同时表情符号的使用也稍显频繁,但整体而言,这些瑕疵是可以接受的。

图片

许多人对新版GPT-4o的“个性”表示不满,但显然OpenAI正通过A/B测试根据大多数用户的偏好进行调整。如果你不认同大多数人的喜好,目前可以先尝试使用自定义指令。此外,ChatGPT会模仿你的输入风格,因此那些觉得它表现尴尬的人其实很有趣——这更像是在反映他们自己的表达方式。毕竟,我的ChatGPT回复从来不像网上截图里那些被批评的内容那样糟糕。

图片

我倒不觉得新版“个性”让我不舒服。说实话,我已经用了自定义指令挺长一段时间了,这个模型在执行这些指令方面依然很出色,所以我自己的对话体验并没有明显的风格变化。我注意到的是别人分享的内容。那些内容显示,它确实有些趋向于过度奉承,不过在我使用自定义指令后,这种情况几乎不见了。我特别要求它在我提出的观点或假设有误时,结合已有输入、搜索结果或它自己的知识,对我进行挑战。而它对此执行得非常好。
图片

现在,免费版已经不会出现过于讨好的回复了,不过通过自定义指令依然可以让ChatGPT产生类似的表达。坦白说,这种风格反而挺有趣的,特别适合用来写小说,能够激发丰富的想象力,带来灵感。
·

·

### 比较OpenAI GPT-4GPT-4o模型 #### 特征差异 GPT-4代表了OpenAI在大型语言模型技术上的最新进展,具有更高的参数量和改进的架构设计,旨在提供更为流畅自然的语言理解和生成能力。相比之下,关于GPT-4o的信息较少,通常认为这是针对特定优化版本或是内部使用的变体之一[^1]。 #### 性能对比 具体到性能方面,在公开资料中并没有直接提及GPT-4o的具体评测数据。然而,基于一般模式,可以推测GPT-4o可能是在原有基础上做了针对性调整或优化,比如提升了某些应用场景下的效率或者降低了资源消耗等特性。而标准版GPT-4则经过大规模预训练并广泛应用于多种任务场景,其泛化能力和适应范围更加广阔。 #### 应用领域 由于缺乏详细的官方说明文档来描述两者之间的区别,对于想要深入了解两者的不同之处以及各自适用场景的人来说存在一定难度。但从逻辑推断来看,如果存在所谓的"GPT-4o"版本,则很可能是为了满足特殊需求而定制开发出来的分支版本;它或许会在特定行业应用中有更好的表现,或者是专门为某类计算环境进行了适配性改造。 ```python # 这里仅展示如何通过Python代码加载两个假设存在的模型进行简单推理演示, # 实际操作需依据实际可用API接口编写相应程序。 import transformers as trf model_name_4 = "openai/gpt-4" tokenizer_4 = trf.AutoTokenizer.from_pretrained(model_name_4) model_4 = trf.AutoModelForCausalLM.from_pretrained(model_name_4) # 假设GPT-4o也存在于Hugging Face Model Hub中 model_name_4o = "openai/gpt-4o" tokenizer_4o = trf.AutoTokenizer.from_pretrained(model_name_4o) model_4o = trf.AutoModelForCausalLM.from_pretrained(model_name_4o) text_input = ["Tell me about the weather today."] input_ids_4 = tokenizer_4(text_input, return_tensors="pt").input_ids output_4 = model_4.generate(input_ids_4) input_ids_4o = tokenizer_4o(text_input, return_tensors="pt").input_ids output_4o = model_4o.generate(input_ids_4o) print(f'Output from GPT-4:\n{tokenizer_4.decode(output_4[0], skip_special_tokens=True)}') print(f'\nOutput from GPT-4o:\n{tokenizer_4o.decode(output_4o[0], skip_special_tokens=True)}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

福大大架构师每日一题

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值