本博客整理自六哥的视频,链接:https://mp.weixin.qq.com/s/bP1SsMexoTmE3vQ9lJzcJw
问:如何通过实验验证自己对某个开源SLAM的局部改进效果,如对BA,回环检测,跟踪等部分的改进,需要专门的数据集么???
答:一般需要俩个实验。
第一部分:是在常用的数据集上和其他经典的SLAM算法,或者是自己方向小研究分支店内的算法进行定性的和定量的精度评估,因为这些数据集都提供真值,可以的得到绝对的结果。
第二部分:是自己录制针对性的,能够明显展示出自己研究成果效果优秀的数据集,同样和其他经典的SLAM算法做相对的定性对比(划重点,是定性!!!),比如自己代码针对某项改进前和改进后的区别(类似深度学习中的消融实验),以及和其他算法在特定场景下的关于精度,鲁棒性,耗时等方面的定性对比。
问:第二部分为啥不和真值作比较?
答:因为获取真值的手段一般来说比较昂贵(动捕系统动辄20w+),绝大部分论文针对自己的改进算法只做了定性比较。
最后附上古月居关于定位精度方法总结的文章:https://blog.csdn.net/Yong_Qi2015/article/details/124995824