生信分析:生存曲线

文章介绍了两种生存分析平台——GEPIA和Cbioportal的用途,并分享了如何从UCSCXena下载数据进行生存分析。通过R代码,文章详细阐述了整合临床和表达数据、建立Cox模型以及确定最佳cutoff值来绘制生存曲线的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、生存分析的平台(直接使用平台做生存分析)

生存分析的平台有很多,我使用过以下两种,感觉比较稳定也不错:

  1. GEPIA:适合生成生存曲线可视化结果(可以作为参考,但我倾向于自己抽取数据写R代码来画生存曲线)
  2. Cbioportal:可以用来下载临床生存数据,也可以可视化

平台的使用教程就不在此处赘述了,相信大家都可以搜到

二、自己写代码进行生存分析(方便可视化图的调整和修改)

数据来源

做生存分析需要两类数据作为输入:

  1. 临床生存数据
  2. 表达量数据
    注意:二者的样本要对应

数据的来源有很多,我目前使用过从UCSC Xena下载数据做生存分析,简述一下如何下载数据和生成生存曲线

从UCSC Xena下载数据

从博主的UCSCXenaTools学到的。
1.临床数据

点开之后点击download下载即可,得到txt文件,对于生存数据的相关指标的描述在另一名博主的教程里做了明确的解释:
OS/PFS/PFI/DFS/DFI/DSS各种生存指标定义
2.表达数据
因为要选择和临床生存数据所匹配的表达数据,所以也要从相应的平台下载(sample要对应嘛)

根据UCSCXenaTools的教程选择第二种(虽然我也不知道为什么啦,知道原因的欢迎评论区留言哦)

点开之后点击download下载即可,得到压缩包,里面文件可以用txt打开在这里插入图片描述

生存曲线

1.首先要整合临床数据和表达数据,按照UCSCXenaTools的教程,整理成如图所示的格式(注意表达量和时间、状态都是数字类型哦)
在这里插入图片描述
表达量可以有多个基因的多列,只要样本、time、status对应无误即可,例如:
在这里插入图片描述
2.整理好数据之后,就按照Survival analysis的流程做起

首先导入包

library(survival)
library(survminer)

之后Cox model
merged_data就是之前整合好的数据,KRAS_expression,time, status都是merged_data的列名,分别代表要分析的基因的表达量、生存时间、生存状态

fit = coxph(Surv(time, status) ~ KRAS_expression, data = merged_data)

之后取最佳cutoff(截断)【很重要,不然pvalue不能<0.05(显著)】
按照博主的流程来即可取最佳cutoff(截断)并绘制生存曲线
在这里插入图片描述
还有具体绘制的详细参数设置教程生存曲线图详细绘图教程

补充:若要修改风险表等表的具体参数可在ggsurvplot内添加tables.theme,例如

tables.theme=theme(
              plot.title=element_text(face="bold",size=15),
              axis.title.x = element_text(size=20,face="bold",family="Arial" ),
              axis.text.y=element_text(size=13,face="bold"),
              axis.text.x=element_text(size=15,color="black"))

再次感谢提供教程的博主们,此处整理供大家方便汲取博主们的经验

<think>好的,用户想进行TCGA数据库中肾透明细胞癌(KIRC)的息学分析,需要了解相关的工具和方法。首先,我需要回顾TCGA数据分析的常用流程,确保覆盖数据获取、预处理、差异分析生存分析、通路富集等步骤。 用户可能对具体的工具不太熟悉,所以要列举常见的工具,比如GDC Data Portal、UCSC Xena、cBioPortal等数据获取平台。同时,预处理步骤中的R包如DESeq2、edgeR也需要提到,这些都是处理RNA-seq数据的标准工具。 差异表达分析部分,要强调DESeq2和limma的使用,可能用户需要知道如何处理基因表达数据。生存分析方面,survival和survminer包是基础,可以结合Kaplan-Meier曲线进行可视化,这部分可能需要代码示例。 功能富集分析工具如clusterProfiler和DAVID也是关键,用户可能想知道如何解释差异基因的物学意义。另外,体细胞突变分析的工具如MutSigCV和GISTIC,以及多组学整合的工具如Cox比例风险模型,都需要涵盖。 还需要考虑用户可能对流程不熟悉,所以给出一个基本流程框架,从数据下载到结果可视化,帮助他们逐步进行。此外,注意事项部分提醒数据质量控制、批次效应和临床数据整合,这些都是分析中常见的陷阱。 最后,成的相关问题需要覆盖工具选择、差异基因识别、生存分析、多组学整合和可视化方法,确保用户后续有进一步的学习方向。同时,确保回答中提到的工具和步骤都有引用来源,比如GDC Data Portal和TCGA出版物,以增加可靠性。</think>### TCGA肾透明细胞癌息学分析工具与方法 #### 1. **数据获取与预处理** - **TCGA数据下载**:通过[GDC Data Portal](https://portal.gdc.cancer.gov/)或[UCSC Xena浏览器](https://xenabrowser.net/)获取RNA-seq、DNA甲基化、体细胞突变等数据[^1] - **数据清洗**:使用`R`语言中的`TCGAbiolinks`包进行数据标准化和批次校正 - **临床数据整合**:通过`SummarizedExperiment`对象整合表达矩阵与临床息 #### 2. **差异表达分析** - **工具选择**: - `DESeq2`:适用于RNA-seq数据的差异基因分析 - `limma`:处理微阵列或RNA-seq数据的线性模型框架 ```r library(DESeq2) dds <- DESeqDataSetFromMatrix(countData=counts, colData=meta, design=~condition) dds <- DESeq(dds) res <- results(dds) ``` #### 3. **生存分析** - **关键方法**: - Kaplan-Meier曲线绘制(`survival`+`survminer`包) - Cox比例风险模型构建 ```r library(survival) fit <- survfit(Surv(OS_time, OS_status) ~ gene_expression_group, data=clin) ``` #### 4. **功能富集分析** - **推荐工具**: - `clusterProfiler`进行GO/KEGG富集分析 - `GSEA`软件进行基因集富集分析 - `STRING`数据库构建蛋白互作网络 #### 5. **体细胞突变分析** - **专用工具**: - `MutSigCV`识别显著突变基因 - `maftools`可视化突变频谱 - `GISTIC`分析拷贝数变异 #### 6. **多组学整合分析** - **分析方法**: - 甲基化-表达相关性分析(`methylmix`) - miRNA-mRNA调控网络构建 - 多组学聚类(`iClusterPlus`) ### 典型分析流程 $$ \text{数据获取} \rightarrow \text{质量控制} \rightarrow \text{差异分析} \rightarrow \text{功能注释} \rightarrow \text{存验证} \rightarrow \text{机制预测} $$ ### 注意事项 1. 需处理TCGA数据特有的批次效应(使用`ComBat`校正) 2. 建议使用Firehose标准分析流程作为基准[^2] 3. 关注肿瘤纯度调整(ESTIMATE算法)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值