基于神经网络补偿的主动悬架自适应控制

本文探讨了神经网络在1/4悬架模型中的应用,通过仿真分析展示了不同γ参数对车身加速、悬架动扰度、车轮动变形的影响。研究表明,γ值的调整能显著改变控制效果,例如,γ较大时可优化车身和悬架性能但可能导致车轮变形增加和能耗增大。
摘要由CSDN通过智能技术生成

目录

前言

1. 1/4悬架模型 

2.仿真分析

2.1仿真结果

2.1.1 形①

2.1.2 形②

3. 总结


前言

上两篇博客我们介绍了神经网络补偿+控制律的仿真测试,从仿真结果我们可以得知神经网络具有逼近扰动,并将其补偿的作用。

上两篇文章链接:

基于神经网络(RBF)补偿的双关节机械手臂自适应控制_Mr. 邹的博客-CSDN博客

基于神经网络的滑模鲁棒控制_Mr. 邹的博客-CSDN博客

本篇文章我们将其应用于2自由度悬架

1. 1/4悬架模型 

d779ff0ed0b84af2801ae1c1457ad148.png

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr. 邹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值