RNA-seq下游分析之 PCA图

该博客展示了如何使用R语言进行RNA-seq数据的预处理和PCA分析。首先,从文件中读取数据并进行重命名,然后创建DESeq2对象以进行差异表达分析。接着,对数据进行rlog转换,并利用plotPCA函数绘制PCA图,以展示样本间的差异。最后,通过ggplot2进一步定制PCA图,显示了条件和样本名称对样本聚类的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PCA画图 (rna-seq下游)

rm(list=ls())
mydata <- read.table("C:/Users/gao/Desktop/all.id.txt",header =TRUE,quote='\t',skip = 1) 
smpleNames <- c('mesc_1','mesc_1','mesc_2','mesc_2','mesc_3','mesc_3','mesc_4','mesc_4','mesc_5','mesc_5','mesc_6','mesc_6','mesc_7','mesc_7','mesc_8','mesc_8')
names(mydata)[7:22] <- smpleNames 
head(mydata)
countmatrix <- as.matrix(mydata[7:22])
rownames(countmatrix) <- mydata$Geneid
head(countmatrix)
save(countmatrix,file="expr.Rdata")
table2 <- data.frame(name = c('mesc_1','mesc_1','mesc_2','mesc_2','mesc_3','mesc_3','mesc_4','mesc_4','mesc_5','mesc_5','mesc_6','mesc_6','mesc_7','me
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值