Mujoco机器人末端接触力

在 MuJoCo 中计算机器人末端接触力(六维力,即三维力和三维力矩)的核心思路是利用 接触力合成 或 逆动力学原理,结合机器人运动学和动力学模型。

 <sensor>
    <force name="force_sensor" site="force_sensor_site"/>
    <torque name="torque_sensor" site="force_sensor_site"/>
  </sensor>
# 从 force 和 torque 传感器获取数据
            if force_sensor_id != -1 and torque_sensor_id != -1:
                force = data.sensordata[force_sensor_id:force_sensor_id + 3]
                torque = data.sensordata[torque_sensor_id:torque_sensor_id + 3]
                W_ext = -HR @ np.concatenate([force, torque])
            else:
                W_ext = -HR @ np.array([0, 0, 0, 0, 0, 0])

### Mujoco 中实现机器人推动操作 在 Mujoco 仿真环境中执行机器人推动操作涉及多个方面,包括环境设置、控制器设计以及具体的操作逻辑。为了更好地理解如何实现在 Mujoco 中的机器人推动任务,可以参考开源项目 `mujoco-worldgen` 提供的功能来简化复杂场景的创建过程[^1]。 对于具体的推动操作实例,虽然直接针对此特定行为的官方文档可能有限,但从 Cassie-Mujoco-Sim 的描述可以看出,在 MuJoCo 环境下进行复杂的动作控制是可行的,并且有现成的例子可供借鉴[^3]。下面给出一段 Python 代码片段作为概念验证,展示了一个简单的机器人手臂尝试推动物体的过程: ```python import mujoco_py as mjp from mujoco_worldgen.util import register_env, make_env import numpy as np register_env('push_task', { 'robot': 'fetch', 'task': 'push' }) env = make_env('push_task') obs = env.reset() for t in range(1000): action = [0]*7 # 假设 Fetch 机械臂具有七个自由度的动作空间 # 这里可以根据实际情况调整为更合理的策略函数输出 obs, reward, done, info = env.step(action) if done: break mjp.functions.mjv_opt.flags[mjp.enums.mjtVisFlag.mjVIS_CONTACTPOINT] = True env.render() ``` 这段脚本展示了利用预定义的任务模板快速搭建起一个包含 Fetch 机器人和目标物体的基础实验平台的方法。通过自定义动作向量中的数值,能够改变机器人的姿态从而完成不同的交互任务,比如这里的“推”。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值