估计离散时间或连续时间线性系统的状态。 卡尔曼滤波(Kalman filter)是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。卡尔曼滤波会根据各测量量在不同时间下的值,考虑各时间下的联合分布,再产生对未知变数的估计,因此会比只以单一测量量为基础的估计方式要准。卡尔曼滤波得名自主要贡献者之一的鲁道夫·卡尔曼。 使用Kalman Filter模块在给定过程和测量噪声协方差数据的情况下估计状态空间对象模型的状态 图解卡尔曼滤波器,无需深厚的数学知识也易懂(第三部分:α−β−γ滤波器) - 知乎案例1: 称金子重量现在我们已经有足够的基础看第一个简单的例子。在这个例子中,我们将估计静态系统的状态。静态系统是一个在合理时间内不会改变其状态的系统。例如,静态系统可以是一个塔,状态是它的高度。 在…https://zhuanlan.zhihu.com/p/80444577?from_voters_page=true Estimate states of discrete-time or continuous-time linear system - Simulink- MathWorks 中国Use the Kalman Filter block to estimate states of a state-space plant model given process and measurement noise covariance data.https://ww2.mathworks.cn/help/control/ref/kalmanfilter.html?searchHighlight=Kalman%20Filter&s_tid=srchtitle_Kalman%2520Filter_2 Kalman Filtering- MATLAB & Simulink- MathWorks 中国Perform Kalman filtering and simulate the system to show how the filter reduces measurement error for both steady-state and time-varying filters.https://ww2.mathworks.cn/help/control/ug/kalman-filtering.html?searchHighlight=Kalman%20Filter&s_tid=srchtitle_Kalman%2520Filter_1