时间序列分析 #AR模型平稳性的判别

本文详细介绍了AR模型的定义、结构和稳定性判别方法,通过实例演示了如何使用arima.sim和filter函数创建并分析四个AR模型的平稳性,包括利用图示和特征根法进行判断。结果显示,模型(1)和(4)平稳,(2)和(3)非平稳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 理解AR模型的定义,能熟练写出AR模型的模型结构和特征方程的表达式;
  2. 掌握AR模型平稳性判别的三种方法,即图示法、特征根法和平稳域方法。

练习1、考察如下四个AR模型的平稳性:

利用函数arima.sim或函数filter拟合上述四个序列的序列值,绘制时序图(以2×2的结构排列),并对图形做出解释,判断该序列是否平稳。

#使用arima.sim函数产生(1)、(3)两个平稳AR模型
x1 <- arima.sim(n = 100,list(ar = 0.612))
x4 <- arima.sim(n = 100,list(ar = c(-0.1,0.72)))
#注:arima.sim函数如果指定拟合的AR模型为非平稳模型,系统会报错!

#使用filter函数产生序列(2)、(4)两个非平稳AR模型
x2 <- filter(rnorm(100),filter = 1.7,method = "recur
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎曼最初的梦想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值