视觉SLAM十四讲CH6代码解析及课后习题详解

 gaussNewton.cpp

#include <iostream>
#include <chrono>
#include <opencv2/opencv.hpp>
#include <Eigen/Core>//Eigen核心模块
#include <Eigen/Dense>//Eigen稠密矩阵运算模块

using namespace std;
using namespace Eigen;
//高斯牛顿法拟合曲线y = exp(a * x^2 + b * x + c)
int main(int argc, char **argv) {
  double ar = 1.0, br = 2.0, cr = 1.0;         // 真实参数值
  double ae = 2.0, be = -1.0, ce = 5.0;        // 估计参数值,并赋初始值
  int N = 100;                                 // 数据点
  double w_sigma = 1.0;                        // 噪声Sigma值
  double inv_sigma = 1.0 / w_sigma;
  cv::RNG rng;                                 // OpenCV随机数产生器 RNG为OpenCV中生成随机数的类,全称是Random Number Generator

  vector<double> x_data, y_data;      // double数据x_data, y_data
  for (int i = 0; i < N; i++) {
    double x = i / 100.0;//相当于x范围是0-1
    x_data.push_back(x);//x_data存储的数值
    y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));//rng.gaussian(w_sigma * w_sigma)为opencv随机数产生高斯噪声
   //rng.gaussian(val)表示生成一个服从均值为0,标准差为val的高斯分布的随机数  视觉slam十四讲p133式6.38上面的表达式
  }

  // 开始Gauss-Newton迭代 求ae,be和ce的值,使得代价最小
  int iterations = 100;    // 迭代次数
  double cost = 0, lastCost = 0;  // 本次迭代的cost和上一次迭代的cost  cost表示本次迭代的代价,lastCost表示上次迭代的代价
   //cost = error * error,error表示测量方程的残差

  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();//std::chrono是c++11引入的日期处理库,其中包含三种时钟(system_clock,steady_clock,high_resolution_clock)
  //t1表示steady_clock::time_point类型
  for (int iter = 0; iter < iterations; iter++) {

    Matrix3d H = Matrix3d::Zero(); // Hessian = J^T W^{-1} J in Gauss-Newton 将矩阵H初始化为3*3零矩阵,表示海塞矩阵,H = J * (sigma * sigma).transpose() * J.transpose() 
    //(视觉slam十四讲p133式6.41左边)
    Vector3d b = Vector3d::Zero(); // bias 将b初始化为3*1零向量,b = -J * (sigma * sigma).transpose() * error,error表示测量方程的残差(视觉slam十四讲p133式6.41右边)
    cost = 0;
    //遍历所有数据点计算H,b和cost
    for (int i = 0; i < N; i++) {
      double xi = x_data[i], yi = y_data[i];  // 第i个数据点
      double error = yi - exp(ae * xi * xi + be * xi + ce);//视觉slam十四讲p133式6.39
      Vector3d J; // 雅可比矩阵
      J[0] = -xi * xi * exp(ae * xi * xi + be * xi + ce);  // de/da 视觉slam十四讲p133式6.40 第一个
      J[1] = -xi * exp(ae * xi * xi + be * xi + ce);  // de/db 视觉slam十四讲p133式6.40 第二个
      J[2] = -exp(ae * xi * xi + be * xi + ce);  // de/dc 视觉slam十四讲p133式6.40 第三个

      H += inv_sigma * inv_sigma * J * J.transpose();//视觉slam十四讲p133式6.41左边 求和
      b += -inv_sigma * inv_sigma * error * J;//视觉slam十四讲p133式6.41右边 求和

      cost += error * error;//残差平方和
    }

    // 求解线性方程 Hx=b
    Vector3d dx = H.ldlt().solve(b); //ldlt()表示利用Cholesky分解求dx
    if (isnan(dx[0]))//isnan()函数判断输入是否为非数字,是非数字返回真,nan全称为not a number
     {
      cout << "result is nan!" << endl;
      break;
    }

    if (iter > 0 && cost >= lastCost) //因为iter要大于0,第1次迭代(iter = 0, cost > lastCost)不执行!
    {
      cout << "cost: " << cost << ">= last cost: " << lastCost << ", break." << endl;
      break;
    }
   //更新优化变量ae,be和ce!
    ae += dx[0];
    be += dx[1];
    ce += dx[2];

    lastCost = cost; //更新上一时刻代价

    cout << "total cost: " << cost << ", \t\tupdate: " << dx.transpose() <<
         "\t\testimated params: " << ae << "," << be << "," << ce << endl;
  }

  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve time cost = " << time_used.count() << " seconds. " << endl;

  cout << "estimated abc = " << ae << ", " << be << ", " << ce << endl;
  return 0;
}

CMakeLists.txt 

cmake_minimum_required(VERSION 2.8)
project(ch6)

set(CMAKE_BUILD_TYPE Release)
set(CMAKE_CXX_FLAGS "-std=c++14 -O3")

list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)

# OpenCV
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})

# Ceres
find_package(Ceres REQUIRED)
include_directories(${CERES_INCLUDE_DIRS})

# g2o
find_package(G2O REQUIRED)
include_directories(${G2O_INCLUDE_DIRS})

# Eigen
include_directories("/usr/include/eigen3")

add_executable(gaussNewton gaussNewton.cpp)
target_link_libraries(gaussNewton ${OpenCV_LIBS})

add_executable(ceresCurveFitting ceresCurveFitting.cpp)
target_link_libraries(ceresCurveFitting ${OpenCV_LIBS} ${CERES_LIBRARIES})


add_executable(g2oCurveFitting g2oCurveFitting.cpp)
target_link_libraries(g2oCurveFitting ${OpenCV_LIBS} ${G2O_CORE_LIBRARY} ${G2O_STUFF_LIBRARY})

 执行结果:

total cost: 3.19575e+06, 		update: 0.0455771  0.078164 -0.985329		estimated params: 2.04558,-0.921836,4.01467
total cost: 376785, 		update:  0.065762  0.224972 -0.962521		estimated params: 2.11134,-0.696864,3.05215
total cost: 35673.6, 		update: -0.0670241   0.617616  -0.907497		estimated params: 2.04432,-0.0792484,2.14465
total cost: 2195.01, 		update: -0.522767   1.19192 -0.756452		estimated params: 1.52155,1.11267,1.3882
total cost: 174.853, 		update: -0.537502  0.909933 -0.386395		estimated params: 0.984045,2.0226,1.00181
total cost: 102.78, 		update: -0.0919666   0.147331 -0.0573675		estimated params: 0.892079,2.16994,0.944438
total cost: 101.937, 		update: -0.00117081  0.00196749 -0.00081055		estimated params: 0.890908,2.1719,0.943628
total cost: 101.937, 		update:   3.4312e-06 -4.28555e-06  1.08348e-06		estimated params: 0.890912,2.1719,0.943629
total cost: 101.937, 		update: -2.01204e-08  2.68928e-08 -7.86602e-09		estimated params: 0.890912,2.1719,0.943629
cost: 101.937>= last cost: 101.937, break.
solve time cost = 0.00112835 seconds. 
estimated abc = 0.890912, 2.1719, 0.943629

ceresCurveFitting.cpp 

#include <iostream>
#include <opencv2/core/core.hpp>
#include <ceres/ceres.h>//ceres库头文件
#include <chrono>

using namespace std;

// 代价函数的计算模型
struct CURVE_FITTING_COST {
  CURVE_FITTING_COST(double x, double y) : _x(x), _y(y) {}//使用初始化列表赋值写法的构造函数

  // 残差的计算
  template<typename T>//函数模板,使得下面定义的函数可以支持多种不同的形参,避免重载函数的函数体重复设计。
  bool operator()(
    const T *const abc, // 模型参数,有3维
    T *residual) const //重载运算符()
    {
    residual[0] = T(_y) - ceres::exp(abc[0] * T(_x) * T(_x) + abc[1] * T(_x) + abc[2]); // y-exp(ax^2+bx+c) residual表示残差
    return true;
   //返回bool类型,计算结果已经存入函数外的residual变量中
  }

  const double _x, _y;    // x,y数据 结构体CURVE_FITTING_COST中的成员变量
};

int main(int argc, char **argv) {
  double ar = 1.0, br = 2.0, cr = 1.0;         // 真实参数值
  double ae = 2.0, be = -1.0, ce = 5.0;        // 估计参数值
  int N = 100;                                 // 数据点
  double w_sigma = 1.0;                        // 噪声Sigma值 初始化为1
  double inv_sigma = 1.0 / w_sigma;            //标准差的逆
  cv::RNG rng;                                 // OpenCV随机数产生器 RNG为OpenCV中生成随机数的类,全称是Random Number Generator

  vector<double> x_data, y_data;      // 数据  // double数据x_data, y_data
  for (int i = 0; i < N; i++) {
    double x = i / 100.0;//相当于x范围是0-1
    x_data.push_back(x);//x_data存储的数值 所给的100个观测点数据
    y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
    //rng.gaussian(w_sigma * w_sigma)为opencv随机数产生高斯噪声
   //rng.gaussian(val)表示生成一个服从均值为0,标准差为val的高斯分布的随机数  视觉slam十四讲p133式6.38上面的表达式
  }

  double abc[3] = {ae, be, ce};//定义优化变量

  // 构建最小二乘问题
  ceres::Problem problem;//定义一个优化问题类problem
  for (int i = 0; i < N; i++) {
    problem.AddResidualBlock(     // 向问题中添加误差项
      // 使用自动求导,模板参数:误差类型,输出维度,输入维度,维数要与前面struct中一致
      new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 3>(
        new CURVE_FITTING_COST(x_data[i], y_data[i])
      ),
      nullptr,            // 核函数,这里不使用,为空  添加损失函数(即鲁棒核函数),这里不使用,为空
      abc                 // 待估计参数 优化变量,3维数组
    );
  }

  // 配置求解器
  ceres::Solver::Options options;     // 这里有很多配置项可以填 定义一个配置项集合类options
  options.linear_solver_type = ceres::DENSE_NORMAL_CHOLESKY; 
  // 增量方程如何求解 增量方程求解方式,本质上是稠密矩阵求逆的加速方法选择
  options.minimizer_progress_to_stdout = true;   
  // 输出到cout minimizer_progress_to_stdout表示是否向终端输出优化过程信息

  ceres::Solver::Summary summary; // 优化信息 利用ceres执行优化
  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  ceres::Solve(options, &problem, &summary);  // 开始优化
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve time cost = " << time_used.count() << " seconds. " << endl;

  // 输出结果
  cout << summary.BriefReport() << endl;
  cout << "estimated a,b,c = ";//输出估计值
  for (auto a:abc) cout << a << " ";
  cout << endl;

  return 0;
}

CMakeLists.txt 和上面是一样的。

执行结果:

iter      cost      cost_change  |gradient|   |step|    tr_ratio  tr_radius  ls_iter  iter_time  total_time
   0  1.597873e+06    0.00e+00    3.52e+06   0.00e+00   0.00e+00  1.00e+04        0    4.82e-05    1.25e-04
   1  1.884440e+05    1.41e+06    4.86e+05   9.88e-01   8.82e-01  1.81e+04        1    7.30e-05    2.73e-04
   2  1.784821e+04    1.71e+05    6.78e+04   9.89e-01   9.06e-01  3.87e+04        1    2.50e-05    3.11e-04
   3  1.099631e+03    1.67e+04    8.58e+03   1.10e+00   9.41e-01  1.16e+05        1    2.41e-05    3.48e-04
   4  8.784938e+01    1.01e+03    6.53e+02   1.51e+00   9.67e-01  3.48e+05        1    2.38e-05    3.81e-04
   5  5.141230e+01    3.64e+01    2.72e+01   1.13e+00   9.90e-01  1.05e+06        1    2.41e-05    4.15e-04
   6  5.096862e+01    4.44e-01    4.27e-01   1.89e-01   9.98e-01  3.14e+06        1    2.38e-05    4.48e-04
   7  5.096851e+01    1.10e-04    9.53e-04   2.84e-03   9.99e-01  9.41e+06        1    2.41e-05    4.81e-04
solve time cost = 0.00053221 seconds. 
Ceres Solver Report: Iterations: 8, Initial cost: 1.597873e+06, Final cost: 5.096851e+01, Termination: CONVERGENCE
estimated a,b,c = 0.890908 2.1719 0.943628 

 g2oCurveFitting.cpp

#include <iostream>
#include <g2o/core/g2o_core_api.h>
#include <g2o/core/base_vertex.h>//g2o顶点(Vertex)头文件 视觉slam十四讲p141用顶点表示优化变量,用边表示误差项
#include <g2o/core/base_unary_edge.h>//g2o边(edge)头文件
#include <g2o/core/block_solver.h>//求解器头文件
#include <g2o/core/optimization_algorithm_levenberg.h>//列文伯格——马尔夸特算法头文件
#include <g2o/core/optimization_algorithm_gauss_newton.h>//高斯牛顿算法头文件
#include <g2o/core/optimization_algorithm_dogleg.h>//dogleg算法头文件
#include <g2o/solvers/dense/linear_solver_dense.h>//稠密矩阵求解
#include <Eigen/Core>//Eigen核心模块
#include <opencv2/core/core.hpp>
#include <cmath>
#include <chrono>

using namespace std;

// 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex : public g2o::BaseVertex<3, Eigen::Vector3d> //:表示继承,public表示公有继承;CurveFittingVertex是派生类,BaseVertex<3, Eigen::Vector3d>是基类
{
public://以下定义的成员变量和成员函数都是公有的
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW//解决Eigen库数据结构内存对齐问题

  // 重置
  virtual void setToOriginImpl() override //virtual表示该函数为虚函数,override保留字表示当前函数重写了基类的虚函数
  {
    _estimate << 0, 0, 0;
  }

  // 更新
  virtual void oplusImpl(const double *update) override 
  {
    _estimate += Eigen::Vector3d(update);//更新量累加
  }

  // 存盘和读盘:留空
  virtual bool read(istream &in) {} //istream类是c++标准输入流的一个基类
  //可参照C++ Primer Plus第六版的6.8节
  virtual bool write(ostream &out) const {} //ostream类是c++标准输出流的一个基类
  //可参照C++ Primer Plus第六版的6.8节
};

// 误差模型 模板参数:观测值维度,类型,连接顶点类型
class CurveFittingEdge : public g2o::BaseUnaryEdge<1, double, CurveFittingVertex> {
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW//解决Eigen库数据结构内存对齐问题

  CurveFittingEdge(double x) : BaseUnaryEdge(), _x(x) {}//使用列表赋初值

  // 计算曲线模型误差
  virtual void computeError() override //virtual表示虚函数,保留字override表示当前函数重写了基类的虚函数
  {
    const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);//创建指针v
    const Eigen::Vector3d abc = v->estimate();//将estimate()值赋给abc
    _error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0));//视觉slam十四讲p133式6.39
  }

  // 计算雅可比矩阵
  virtual void linearizeOplus() override //virtual表示虚函数,保留字override表示当前函数重写了基类的虚函数
  {
    const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
    const Eigen::Vector3d abc = v->estimate();
    double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]);//视觉slam十四讲p133式6.38上面的式子
    _jacobianOplusXi[0] = -_x * _x * y;//视觉slam十四讲p133式6.40第一个
    _jacobianOplusXi[1] = -_x * y;//视觉slam十四讲p133式6.40第二个
    _jacobianOplusXi[2] = -y;//视觉slam十四讲p133式6.40第三个
  }

  virtual bool read(istream &in) {}

  virtual bool write(ostream &out) const {}

public:
  double _x;  // x 值, y 值为 _measurement
};

int main(int argc, char **argv) {
  double ar = 1.0, br = 2.0, cr = 1.0;         // 真实参数值
  double ae = 2.0, be = -1.0, ce = 5.0;        // 估计参数值
  int N = 100;                                 // 数据点
  double w_sigma = 1.0;                        // 噪声Sigma值
  double inv_sigma = 1.0 / w_sigma;             //标准差的逆
  cv::RNG rng;                                 // OpenCV随机数产生器  RNG为OpenCV中生成随机数的类,全称是Random Number Generator

  vector<double> x_data, y_data;      // double型数据
  for (int i = 0; i < N; i++) {
    double x = i / 100.0;//相当于x范围是0-1
    x_data.push_back(x);//x_data存储的数值 所给的100个观测点数据
    y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
    //rng.gaussian(w_sigma * w_sigma)为opencv随机数产生高斯噪声
    //rng.gaussian(val)表示生成一个服从均值为0,标准差为val的高斯分布的随机数  视觉slam十四讲p133式6.38上面的表达式
  }

  // 构建图优化,先设定g2o
  typedef g2o::BlockSolver<g2o::BlockSolverTraits<3, 1>> BlockSolverType;  // 每个误差项优化变量维度为3,误差值维度为1
  typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型

  // 梯度下降方法,可以从GN, LM, DogLeg 中选
  auto solver = new g2o::OptimizationAlgorithmGaussNewton(
    g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
    //c++中的make_unique表示智能指针类型,而g2o中的make_unique表示
  g2o::SparseOptimizer optimizer;     // 图模型
  optimizer.setAlgorithm(solver);   // 设置求解器
  optimizer.setVerbose(true);       // 打开调试输出

  // 往图中增加顶点
  CurveFittingVertex *v = new CurveFittingVertex();//指针v
  v->setEstimate(Eigen::Vector3d(ae, be, ce));  //ae、be和ce表示优化变量
  v->setId(0);//对顶点进行编号,里面的0你可以写成任意的正整数,但是后面设置edge连接顶点时,必须要和这个一致
  optimizer.addVertex(v);//添加顶点

  // 往图中增加边
  for (int i = 0; i < N; i++) {
    CurveFittingEdge *edge = new CurveFittingEdge(x_data[i]);
    edge->setId(i);//对边进行编号
    edge->setVertex(0, v);                // 设置连接的顶点
    //edge->setVertex(0, v); 其中的0为该边连接的第一个顶点,即前面编号为0的顶点v,因为是一元边,因此只需这一句。
    //根据函数公式:y=exp(ax^2+bx+c)+w可知,y为观测值,故有edge->setMeasurement(y_data[i])。图构建出之后,即可进行迭代求解。
    edge->setMeasurement(y_data[i]);      // 观测数值
    edge->setInformation(Eigen::Matrix<double, 1, 1>::Identity() * 1 / (w_sigma * w_sigma)); // 信息矩阵:协方差矩阵之逆
    optimizer.addEdge(edge);//添加边
  }

  // 执行优化
  cout << "start optimization" << endl;//输出start optimization
  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  optimizer.initializeOptimization(); //优化过程初始化
  optimizer.optimize(10);//设置优化的迭代次数
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve time cost = " << time_used.count() << " seconds. " << endl;

  // 输出优化值
  Eigen::Vector3d abc_estimate = v->estimate();
  cout << "estimated model: " << abc_estimate.transpose() << endl;

  return 0;
}

CMakeLists.txt 和上面是一样的。

 执行结果:

start optimization
iteration= 0	 chi2= 376785.128234	 time= 7.826e-05	 cumTime= 7.826e-05	 edges= 100	 schur= 0
iteration= 1	 chi2= 35673.566018	 time= 6.3717e-05	 cumTime= 0.000141977	 edges= 100	 schur= 0
iteration= 2	 chi2= 2195.012304	 time= 1.4645e-05	 cumTime= 0.000156622	 edges= 100	 schur= 0
iteration= 3	 chi2= 174.853126	 time= 1.5095e-05	 cumTime= 0.000171717	 edges= 100	 schur= 0
iteration= 4	 chi2= 102.779695	 time= 1.4614e-05	 cumTime= 0.000186331	 edges= 100	 schur= 0
iteration= 5	 chi2= 101.937194	 time= 1.4855e-05	 cumTime= 0.000201186	 edges= 100	 schur= 0
iteration= 6	 chi2= 101.937020	 time= 1.4874e-05	 cumTime= 0.00021606	 edges= 100	 schur= 0
iteration= 7	 chi2= 101.937020	 time= 1.4875e-05	 cumTime= 0.000230935	 edges= 100	 schur= 0
iteration= 8	 chi2= 101.937020	 time= 1.4564e-05	 cumTime= 0.000245499	 edges= 100	 schur= 0
iteration= 9	 chi2= 101.937020	 time= 1.4535e-05	 cumTime= 0.000260034	 edges= 100	 schur= 0
solve time cost = 0.00184401 seconds. 
estimated model: 0.890912   2.1719 0.943629

 课后习题:

1. 证明线性方程Ax = b 当系数矩阵A 超定时,最小二乘解为

参考链接:视觉SLAM十四讲(第二版)第6讲习题解答 - 知乎大家好,这里是Philip~最近在学习高博的《视觉SLAM十四讲》(第二版),以下是对第6讲习题的解答,如有错误或不全面的地方还请大家指正。 1. 证明线性方程 Ax=b 当系数矩阵 A 超定时,最小二乘解为 x=(A^{T}A)^{-1…https://zhuanlan.zhihu.com/p/389072502

2. 调研最速下降法、牛顿法、GN 和LM 各有什么优缺点。除了我们举的Ceres 库和g2o 库,还有哪些常用的优化库?你可能会找到一些MATLAB 上的库。

Ipopt:

Ipopthttps://github.com/coin-or/Ipopt

SLAM++:

【论文阅读1】SLAM++: SLAM at the Level of Objects - 知乎去年读了不少论文,但是感觉还是记录下来印象更深刻一些。就在知乎记录吧,内容基本都是是翻译过来的,由于时间有限,没有仔细润色,可能不太通顺,以后再慢慢改。 这里记录第一篇文章: R. F. Salas-Moreno, R. A…https://zhuanlan.zhihu.com/p/102562833SLAM++ 增量式BA优化库_Roby-CSDN博客incSLAM++是3DV 2017最佳论文,源文件网址 https://sourceforge.net/p/slam-plus-plus/wiki/Home/ incSLAM++有两个创新点:一是增量式Schur补更新。如果delta更新是稀疏的,则采用增量式Schur补来求解非线性最小二乘问题,即增量式BA问题,会缩短计算时间。求解不同关键帧之间的位姿和每帧上的点即求解增量式BA(解不是全局的...https://blog.csdn.net/houlianfeng/article/details/79993162


liblbfgs:

liblbfgs简介_yu132563的专栏-CSDN博客liblbfgs简介liblbfgs是L-BFGS算法的C语言实现,用于求解非线性优化问题。liblbfgs的主页:http://www.chokkan.org/software/liblbfgs/下载链接(见上面的主页链接):https://github.com/downloads/chokkan/liblbfgs/liblbfgs-1.10.tar.gzhttps://blog.csdn.net/yu132563/article/details/74731957

 

Optimization Toolbox:

Optimization ToolboxDocumentationhttps://www.mathworks.com/help/optim/index.html?s_tid=CRUX_lftnav

 Nlopt:Overview - NLopt Documentation

 Ubuntu下面安装:

git clone git://github.com/stevengj/nlopt
    
cd nlopt
mkdir build
   
 cd build
cmake ..
make
sudo make install

 详细情况可以阅读readme文件:

大家可以参考这些文章:

使用NLopt做简单优化 - 知乎工作中经常遇到优化的问题,比如多数的统计方法最终都可以归结为一个优化问题。一般的统计和数值计算软件都会包含最优化算法的函数,比如Matlab中的fminsearch等,不过对于C等其他语言,很多时候可以选择的并不多…https://zhuanlan.zhihu.com/p/24350637

基于NLopt库的非线性优化实例_思我所-CSDN博客1. 目标函数在编写目标函数时,若是不便写出显示表达式,可以分步骤推导出目标函数。t是自变量数组,grad是目标函数对自变量的梯度数组(利用无导数接口时,在函数体内可以不用写出grad的表达式)my_func_data可以传入目标函数中需要用到的一些参数,是一个指向结构体的指针。double myfunc(unsigned n, const double *t,double *grad, vo...https://blog.csdn.net/weixin_43795921/article/details/102877218?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163538928816780366520446%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=163538928816780366520446&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~first_rank_ecpm_v1~hot_rank-5-102877218.pc_search_result_cache&utm_term=Nlopt&spm=1018.2226.3001.4187

3. 为什么GN 的增量方程系数矩阵可能不正定?不正定有什么几何含义?为什么在这种情况下解就不稳定了?

转载于: 

视觉SLAM十四讲(第二版)第6讲习题解答 - 知乎大家好,这里是Philip~最近在学习高博的《视觉SLAM十四讲》(第二版),以下是对第6讲习题的解答,如有错误或不全面的地方还请大家指正。 1. 证明线性方程 Ax=b 当系数矩阵 A 超定时,最小二乘解为 x=(A^{T}A)^{-1…https://zhuanlan.zhihu.com/p/389072502

 4. DogLeg 是什么?它与GN 和LM 有何异同?请搜索相关的材料。

参考下面的文章:

Dogleg法(狗腿法)的推导与步骤_CAFE-BABE的博客-CSDN博客看SLAM视觉十四讲的时候了解到了信赖域法(Trust Region)的其中一种叫Dogleg,然而上网找了一圈,发现并没有较为详细的推导,自己整理了一下网上的资源,然后详细的推了一下: 首先L-M法是G-N法与最速下降法的混合形式,通过调整阻尼因子来在这两种方法之间切换,而狗腿法类似,只不过它是通过改变信赖域来实现的。这里可以分为两个问题:如何判断是使用G-N法还是最速...https://blog.csdn.net/qq_35590091/article/details/94628887

5. 阅读Ceres 的教学材料以更好地掌握它的用法。

*************************************************************************

6. 阅读g2o 自带的文档,你能看懂它吗?如果还不能完全看懂,请在第10、11两讲之后回来再看。

*************************************************************************

7.* 请更改曲线拟合实验中的曲线模型,并用Ceres 和g2o 进行优化实验。例如,你可以使用更多的参数和更复杂的模型。

转载于:

视觉slam十四讲ch6曲线拟合 代码注释(笔记版) - 灰色的石头 - 博客园

 我加了些新的注释。

ceresCurveFitting1.cpp 

#include <iostream>
#include <opencv2/core/core.hpp>
#include <ceres/ceres.h>//ceres库头文件
#include <chrono>
 
using namespace std;

// 代价函数的计算模型
 struct CURVE_FITTING_COST
 {
    CURVE_FITTING_COST ( double x, double y ) : _x ( x ), _y ( y ) {}//使用初始化列表赋值写法的构造函数
     // 残差的计算
    template <typename T>//函数模板,使得下面定义的函数可以支持多种不同的形参,避免重载函数的函数体重复设计。
    bool operator() (
        const T* const abc,     // 模型参数,有3维 当没有必要分类的时候 就用一个数组来存储未知的系数,方便管理,而不是设3个变量,之后在()重载函数的形式参数个数变为3个
         T* residual ) const     // 残差 重载运算符()
    {
      residual[0] = T ( _y ) - ceres::exp ( abc[0]*T ( _x ) *T ( _x ) + abc[1]*T ( _x ) + abc[2] );
      // y-exp(ax^2+bx+c) residual表示残差
      return true; //返回bool类型,计算结果已经存入函数外的residual变量中
    }
    const double _x, _y;    // x,y数据
 };
 
int main ( int argc, char** argv )
{
    double a=1.0, b=2.0, c=1.0;         // 真实参数值
    double abc[3] = {0.8,2.1,0.9};      // abc参数的估计值 (修改初始值 下面求解迭代过程会不同)
    int N=100;                          // 数据点
    double w_sigma=1.0;                 // 噪声Sigma值(根号下方差)
    cv::RNG rng;                        // OpenCV随机数产生器 RNG为OpenCV中生成随机数的类,全称是Random Number Generator
  
    vector<double> x_data, y_data;      // 数据

    /*生成符合曲线的样本*/
    cout<<"generating data: "<<endl;   //下面是从真实的曲线中取得样本数据
    for ( int i=0; i<N; i++ )
     {
        double x = i/100.0;//相当于x范围是0-1
        x_data.push_back ( x );//x_data存储的数值 所给的100个观测点数据
        y_data.push_back (
             exp ( a*x*x + b*x + c ) + rng.gaussian ( w_sigma )
        );
        //rng.gaussian(w_sigma)为opencv随机数产生高斯噪声
        //rng.gaussian(val)表示生成一个服从均值为0,标准差为val的高斯分布的随机数  视觉slam十四讲p133式6.38上面的表达式
        //cout<<x_data[i]<<" "<<y_data[i]<<endl;//输出生成数据
     }
 
    // 构建最小二乘问题
    ceres::Problem problem;
    for ( int i=0; i<N; i++ )
    {
        /* 第一个参数 CostFunction* : 描述最小二乘的基本形式即代价函数 例如书上的116页fi(.)的形式
         * 第二个参数 LossFunction* : 描述核函数的形式 例如书上的ρi(.)
         * 第三个参数 double* :       待估计参数(用数组存储)
         * 这里仅仅重载了三个参数的函数,如果上面的double abc[3]改为三个double a=0 ,b=0,c = 0;
         * 此时AddResidualBlock函数的参数除了前面的CostFunction LossFunction 外后面就必须加上三个参数 分别输入&a,&b,&c
         * 我们修改为了a b c三个变量,所以这里代表了3类,之后需要在自己写的CURVE_FITTING_COST类中的operator()函数中,
         * 上面修改的方法与本例程实际上一样,只不过修改的这种方式显得乱,实际上我们在用的时候,一般都是残差种类有几个,那么后面的分类 就分几类
         *
         * (1): 修改后的写法(当然自己定义的代价函数要对应修改重载函数的形式参数,对应修改内部的残差的计算):
         *      ceres::CostFunction* cost_function
         *              = new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 1 ,1 ,1>(
         *                  new CURVE_FITTING_COST ( x_data[i], y_data[i] ) );
         *      problem.AddResidualBlock(cost_function,nullptr,&a,&b,&c);
         *       CURVE_FITTING_COST ( double x, double y ) : _x ( x ), _y ( y ) {}
         *       // 残差的计算
         *       template <typename T>
         *       bool operator() (
         *          const T* const a,
         *          const T* const b,
         *          T* residual   ) const     // 残差
         *       {
         *           residual[0] = T ( _y ) - ceres::exp ( a[0]*T ( _x ) *T ( _x ) + b[0]*T ( _x ) + c[0] ); // y-exp(ax^2+bx+c)
         *           return true;
         *       }
         *       const double _x, _y;    // x,y数据
         *   };//代价类结束
         *
         *
         * ceres::CostFunction* cost_function
         *              = new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 3>(
         *                  new CURVE_FITTING_COST ( x_data[i], y_data[i] ) );
         * problem.AddResidualBlock(cost_function,nullptr,abc)
         * */
        problem.AddResidualBlock (     // 向问题中添加误差项
         // 使用自动求导,模板参数:误差类型,Dimension of residual(输出维度 表示有几类残差,本例程中就一类残差项目,所以为1),输入维度,维数要与前面struct中一致
                /*这里1 代表*/
            new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 3> ( 
                new CURVE_FITTING_COST ( x_data[i], y_data[i] )// x_data[i], y_data[i] 代表输入的获得的试验数据
             ),
            nullptr,// 核函数,这里不使用,为空  添加损失函数(即鲁棒核函数)
            abc   // 待估计参数 优化变量,3维数组
          );                 
     }
 
    // 配置求解器ceres::Solver (是一个非线性最小二乘的求解器)
    ceres::Solver::Options options;     // 这里有很多配置项可以填Options类嵌入在Solver类中 ,在Options类中可以设置关于求解器的参数
    options.linear_solver_type = ceres::DENSE_QR;  // 增量方程如何求解 这里的linear_solver_type 是一个Linear_solver_type的枚举类型的变量
    options.minimizer_progress_to_stdout = true;   // 为真时 内部错误输出到cout,我们可以看到错误的地方,默认情况下,会输出到日志文件中保存
 
    ceres::Solver::Summary summary;                // 优化信息
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();//记录求解时间间隔
    //cout<<endl<<"求解前....."<<endl;
    /*下面函数需要3个参数:
      * 1、 const Solver::Options& options <----> optione
      * 2、 Problem* problem               <----> &problem
      * 3、 Solver::Summary* summary       <----> &summart (即使默认的参数也需要定义该变量 )
      * 这个函数会输出一些迭代的信息。
      * */
    ceres::Solve ( options, &problem, &summary );  // 开始优化
    //cout<<endl<<"求解后....."<<endl;
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>( t2-t1 );
    cout<<"solve time cost = "<<time_used.count()<<" seconds. "<<endl;

     // 输出结果
     // BriefReport() : A brief one line description of the state of the solver after termination.
    cout<<summary.BriefReport() <<endl;
    cout<<"estimated a,b,c = ";//输出估计值
     /*auto a:abc  或者下面的方式都可以*/
    for ( auto &a:abc ) cout<<a<<" ";
    cout<<endl;
 
    return 0;
 }

 CMakeLists.txt 

cmake_minimum_required(VERSION 2.8)
project(ch6)

set(CMAKE_BUILD_TYPE Release)
set(CMAKE_CXX_FLAGS "-std=c++14 -O3")

list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)

# OpenCV
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})

# Ceres
find_package(Ceres REQUIRED)
include_directories(${CERES_INCLUDE_DIRS})

# g2o
find_package(G2O REQUIRED)
include_directories(${G2O_INCLUDE_DIRS})

# Eigen
include_directories("/usr/include/eigen3")

add_executable(gaussNewton gaussNewton.cpp)
target_link_libraries(gaussNewton ${OpenCV_LIBS})

add_executable(ceresCurveFitting1 ceresCurveFitting1.cpp)
target_link_libraries(ceresCurveFitting1 ${OpenCV_LIBS} ${CERES_LIBRARIES})


add_executable(g2oCurveFitting1 g2oCurveFitting1.cpp)
target_link_libraries(g2oCurveFitting1 ${OpenCV_LIBS} ${G2O_CORE_LIBRARY} ${G2O_STUFF_LIBRARY})

 执行结果:

generating data: 
iter      cost      cost_change  |gradient|   |step|    tr_ratio  tr_radius  ls_iter  iter_time  total_time
   0  5.551800e+02    0.00e+00    5.20e+03   0.00e+00   0.00e+00  1.00e+04        0    5.20e-05    1.28e-04
   1  5.678997e+01    4.98e+02    6.58e+02   1.44e-01   9.88e-01  3.00e+04        1    6.39e-05    2.27e-04
   2  5.096903e+01    5.82e+00    5.68e+00   3.34e-02   1.00e+00  9.00e+04        1    2.88e-05    2.63e-04
   3  5.096851e+01    5.15e-04    6.48e-04   1.63e-03   9.99e-01  2.70e+05        1    2.62e-05    2.95e-04
solve time cost = 0.000339815 seconds. 
Ceres Solver Report: Iterations: 4, Initial cost: 5.551800e+02, Final cost: 5.096851e+01, Termination: CONVERGENCE
estimated a,b,c = 0.890919 2.17189 0.943633 

g2oCurveFitting1.cpp

#include <iostream>
#include <g2o/core/base_vertex.h>//g2o顶点(Vertex)头文件 视觉slam十四讲p141用顶点表示优化变量,用边表示误差项
#include <g2o/core/base_unary_edge.h>//g2o边(edge)头文件
#include <g2o/core/block_solver.h>//求解器头文件
#include <g2o/core/optimization_algorithm_levenberg.h>//列文伯格——马尔夸特算法头文件
#include <g2o/core/optimization_algorithm_gauss_newton.h>//高斯牛顿算法头文件
#include <g2o/core/optimization_algorithm_dogleg.h>//dogleg算法头文件
#include <g2o/solvers/dense/linear_solver_dense.h>//稠密矩阵求解
#include <Eigen/Core>//Eigen核心模块
#include <opencv2/core/core.hpp>
#include <cmath>
#include <chrono>
#include <memory>
using namespace std; 

// 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex: public g2o::BaseVertex<3, Eigen::Vector3d>
//:表示继承,public表示公有继承;CurveFittingVertex是派生类,BaseVertex<3, Eigen::Vector3d>是基类
{
public://以下定义的成员变量和成员函数都是公有的
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW  //表示在利用Eigen库的数据结构时new的时候 需要对齐,所以加入EIGEN特有的宏定义即可实现
    //下面几个虚函数都是覆盖了基类的对应同名同参数的函数
    virtual void setToOriginImpl() // 重置 这个虚函数override 覆盖了Vertex类的对应函数 函数名字和参数都是一致的,是多态的本质
    {
        _estimate << 0,0,0;//输入优化变量初始值
    }
    
    virtual void oplusImpl( const double* update ) // 更新 对于拟合曲线这种问题,这里更新优化变量仅仅是简单的加法,
                                                    // 但是到了位姿优化的时候,旋转矩阵更新是左乘一个矩阵 此时这个更新函数就必须要重写了
    {   //更新参数估计值
        _estimate += Eigen::Vector3d(update);//更新量累加
    }
    // 存盘和读盘:留空
    virtual bool read( istream& in ) {} //istream类是c++标准输入流的一个基类
    //可参照C++ Primer Plus第六版的6.8节
    virtual bool write( ostream& out ) const {}//ostream类是c++标准输出流的一个基类
    //可参照C++ Primer Plus第六版的6.8节
};

// 误差模型 模板参数:观测值维度,类型,连接顶点类型  //这里观测值维度是1维,如果是108页6.12式,则观测值维度是2
class CurveFittingEdge: public g2o::BaseUnaryEdge<1,double,CurveFittingVertex>
{
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    //自己添加explicit 防止隐式转换
    explicit CurveFittingEdge( double x ): BaseUnaryEdge(), _x(x) {}
    // 计算曲线模型误差
    void computeError()
    {
/*       _vertices是std::vector<Vertex *>类型的变量,我们这里把基类指针_vertices【0】强制转换成const CurveFittingVertex* 自定义子类的常量指针
        这里的转换是上行转换(子类指针转换到基类),对于static_cast 和dynamic_cast两种的结果都是一样的,但是对于这种下行转换则dynamic_cast比static_cast多了类型检查功能
        更安全些,但是dynamic_cast只能用在类类型的指针 引用,static_cast则不限制,即可以用在类型也可以用在其他类型,所以这里应该更改为dynamic_cast
        const CurveFittingVertex* v = static_cast<const CurveFittingVertex*> (_vertices[0]);
*/
        //修改后
        const CurveFittingVertex* v = dynamic_cast<const CurveFittingVertex*> (_vertices[0]);
        //获取此时待估计参数的当前更新值 为下面计算误差项做准备
        const Eigen::Vector3d abc = v->estimate();
        //这里的error是1x1的矩阵,因为误差项就是1个 _measurement是测量值yi
        _error(0,0) = _measurement - std::exp( abc(0,0)*_x*_x + abc(1,0)*_x + abc(2,0) ) ;
    }
    virtual bool read( istream& in ) {}
    virtual bool write( ostream& out ) const {}
public:
    double _x;  // x 值, y 值为 _measurement
};

int main( int argc, char** argv )
{
    double a=1.0, b=2.0, c=1.0;         // 真实参数值
    double abc[3] = {0,0,0};            // abc参数的估计值
    int N=100;                          // 数据点
    double w_sigma=1.0;                 // 噪声Sigma值
    cv::RNG rng;                        // OpenCV随机数产生器  RNG为OpenCV中生成随机数的类,全称是Random Number Generator
    

    vector<double> x_data, y_data;      // 数据
    
    cout<<"generating data: "<<endl;
    for ( int i=0; i<N; i++ )
    {
        double x = i/100.0;//相当于x范围是0-1
        x_data.push_back ( x );//x_data存储的数值 所给的100个观测点数据
        y_data.push_back (
            exp ( a*x*x + b*x + c ) + rng.gaussian ( w_sigma )
        );
        //rng.gaussian(w_sigma)为opencv随机数产生高斯噪声
        //rng.gaussian(val)表示生成一个服从均值为0,标准差为val的高斯分布的随机数  视觉slam十四讲p133式6.38上面的表达式
        // cout<<x_data[i]<<" "<<y_data[i]<<endl;
    }

    // 构建图优化,先设定g2o
    typedef g2o::BlockSolver< g2o::BlockSolverTraits<3,3> > Block;  // 每个误差项优化变量维度为3,误差值维度为1后面的那个参数与误差变量无关 仅仅表示路标点的维度 这里因为没有用到路标点 所以为什么值都可以

/*
原版错误方式 : 这样会出错
    Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>(); // 线性方程求解器
    Block* solver_ptr = new Block( linearSolver );      // 矩阵块求解器
    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr );//LM法
*/

/*第一种解决方式: 将普通指针强制转换成智能指针 需要注意的是 转化之后 原来的普通指针指向的内容会有变化
 普通指针可以强制转换成智能指针,方式是通过智能指针的一个构造函数来实现的, 比如下面的Block( std::unique_ptr<Block::LinearSolverType>( linearSolver ) );
 这里面就是将linearSolver普通指针作为参数用智能指针构造一个临时的对象,此时原来的普通指针就无效了,一定不要再次用那个指针了,否则会有意想不到的错误,如果还想保留原来的指针
 那么就可以利用第二种方式 定义的时候就直接用智能指针就好,但是就如第二种解决方案那样,也会遇到类型转换的问题。详细见第二种方式说明
    Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>();    // 线性方程求解器
    Block* solver_ptr = new Block( std::unique_ptr<Block::LinearSolverType>( linearSolver ) );      // 矩阵块求解器
    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( std::unique_ptr<g2o::Solver>(solver_ptr) );//LM法
*/

/*第二种解决方案: 定义变量时就用智能指针 需要注意的是 需要std::move移动
 *下面可以这样做 std::make_unique<>是在c++14中引进的 而std::make_shared<>是在c++11中引进的,都是为了解决用new为智能指针赋值的操作。这种更安全。
 *  对于(2)将linearSovler智能指针的资源利用移动构造函数转移到新建立的Block中,此时linearSolver这个智能指针默认不能够访问以及使用了。
 *  对于(3)来说,因为solver_ptr是一个指向Block类型的智能指针,但是g2o::OptimizationAlgorithmLevenberg 构造函数接受的是std::unique_ptr<Solver>的参数,引起冲突,但是智能指针指向不同的类型时,
 *  不能够通过强制转换,所以此时应该用一个std::move将一个solver_ptr变为右值,然后调用std::unique_ptr的移动构造函数,而这个函数的本身并没有限制指针
 *  指向的类型,只要是std::unique_ptr类的对象,我们就可以调用智能指针的移动构造函数进行所属权的移动。
 *
 * */
    std::unique_ptr<Block::LinearSolverType>linearSolver( new g2o::LinearSolverDense<Block::PoseMatrixType>() );// 线性方程求解器(1)
    std::unique_ptr<Block> solver_ptr ( new  Block( std::move(linearSolver) ) );// 矩阵块求解器 (2)
    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( std::move(solver_ptr) );//(3) LM法

    // 梯度下降方法,从GN, LM, DogLeg 中选(下面的两种方式要按照上面的两种解决方案对应修改,否则会编译出错 )
     //g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( std::move(solver_ptr) );
     //g2o::OptimizationAlgorithmDogleg* solver = new g2o::OptimizationAlgorithmDogleg( std::move(solver_ptr) );

    g2o::SparseOptimizer optimizer;     // 图模型
    optimizer.setAlgorithm( solver );   // 设置求解器
    optimizer.setVerbose( true );       // 打开调试输出
    
    // 往图中增加顶点
    CurveFittingVertex* v = new CurveFittingVertex();
    v->setEstimate( Eigen::Vector3d(0,0,0) );//增加顶点的初始值,如果是位姿 则初始值是用ICP PNP来提供初始化值
    v->setId(0);//增加顶点标号 多个顶点要依次增加编号 
    //对顶点进行编号,里面的0你可以写成任意的正整数,但是后面设置edge连接顶点时,必须要和这个一致
    optimizer.addVertex( v );//将新增的顶点加入到图模型中
    
    // 往图中增加边 N个
    for ( int i=0; i<N; i++ )
    {
        CurveFittingEdge* edge = new CurveFittingEdge( x_data[i] );
        edge->setId(i);//对边进行编号
        edge->setVertex( 0, v );                // 设置连接的顶点
        edge->setMeasurement( y_data[i] );      // 观测数值 经过高斯噪声的
        //这里的信息矩阵可以参考:http://www.cnblogs.com/gaoxiang12/p/5244828.html 里面有说明
        edge->setInformation( Eigen::Matrix<double,1,1>::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆 这里为1表示加权为1
        optimizer.addEdge( edge );//添加边
    }
    
    // 执行优化
    cout<<"start optimization"<<endl;//输出start optimization
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    optimizer.initializeOptimization();
    optimizer.optimize(100);//设置优化的迭代次数
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>( t2-t1 );
    cout<<"solve time cost = "<<time_used.count()<<" seconds. "<<endl;
    
    // 输出优化值
    Eigen::Vector3d abc_estimate = v->estimate();
    cout<<"estimated model: "<<abc_estimate.transpose()<<endl;
    
    return 0;
}

 CMakeLists.txt 和上面一样。

执行结果:

generating data: 
start optimization
iteration= 0	 chi2= 30373.727656	 time= 0.000163797	 cumTime= 0.000163797	 edges= 100	 schur= 0	 lambda= 699.050482	 levenbergIter= 7
iteration= 1	 chi2= 13336.948287	 time= 0.00011325	 cumTime= 0.000277047	 edges= 100	 schur= 0	 lambda= 1864.134619	 levenbergIter= 3
iteration= 2	 chi2= 6946.262238	 time= 3.5609e-05	 cumTime= 0.000312656	 edges= 100	 schur= 0	 lambda= 1242.756412	 levenbergIter= 1
iteration= 3	 chi2= 271.023143	 time= 2.8986e-05	 cumTime= 0.000341642	 edges= 100	 schur= 0	 lambda= 414.252137	 levenbergIter= 1
iteration= 4	 chi2= 118.903888	 time= 2.8816e-05	 cumTime= 0.000370458	 edges= 100	 schur= 0	 lambda= 138.084046	 levenbergIter= 1
iteration= 5	 chi2= 113.568661	 time= 2.9216e-05	 cumTime= 0.000399674	 edges= 100	 schur= 0	 lambda= 46.028015	 levenbergIter= 1
iteration= 6	 chi2= 107.476468	 time= 2.9187e-05	 cumTime= 0.000428861	 edges= 100	 schur= 0	 lambda= 15.342672	 levenbergIter= 1
iteration= 7	 chi2= 103.014521	 time= 2.9116e-05	 cumTime= 0.000457977	 edges= 100	 schur= 0	 lambda= 5.114224	 levenbergIter= 1
iteration= 8	 chi2= 101.988349	 time= 2.8866e-05	 cumTime= 0.000486843	 edges= 100	 schur= 0	 lambda= 1.704741	 levenbergIter= 1
iteration= 9	 chi2= 101.937388	 time= 2.8896e-05	 cumTime= 0.000515739	 edges= 100	 schur= 0	 lambda= 0.568247	 levenbergIter= 1
iteration= 10	 chi2= 101.937021	 time= 2.8897e-05	 cumTime= 0.000544636	 edges= 100	 schur= 0	 lambda= 0.378831	 levenbergIter= 1
iteration= 11	 chi2= 101.937020	 time= 2.8976e-05	 cumTime= 0.000573612	 edges= 100	 schur= 0	 lambda= 0.252554	 levenbergIter= 1
iteration= 12	 chi2= 101.937020	 time= 2.8765e-05	 cumTime= 0.000602377	 edges= 100	 schur= 0	 lambda= 0.168370	 levenbergIter= 1
iteration= 13	 chi2= 101.937020	 time= 2.7784e-05	 cumTime= 0.000630161	 edges= 100	 schur= 0	 lambda= 0.112246	 levenbergIter= 1
iteration= 14	 chi2= 101.937020	 time= 3.2503e-05	 cumTime= 0.000662664	 edges= 100	 schur= 0	 lambda= 0.074831	 levenbergIter= 1
iteration= 15	 chi2= 101.937020	 time= 4.9056e-05	 cumTime= 0.00071172	 edges= 100	 schur= 0	 lambda= 13391510.122618	 levenbergIter= 8
iteration= 16	 chi2= 101.937020	 time= 3.4597e-05	 cumTime= 0.000746317	 edges= 100	 schur= 0	 lambda= 857056647.847525	 levenbergIter= 3
solve time cost = 0.00753176 seconds. 
estimated model: 0.890912   2.1719 0.943629

转载于:视觉SLAM十四讲(第二版)第6讲习题解答 - 知乎

ceresCurveFitting2.cpp 

#include <iostream>
#include <opencv2/core/core.hpp>
#include <ceres/ceres.h>/ceres库头文件
#include <chrono>

using namespace std;

// 代价函数的计算模型
struct CURVE_FITTING_COST {
  CURVE_FITTING_COST(double x, double y) : _x(x), _y(y) {}//使用初始化列表赋值写法的构造函数

  // 残差的计算
  template<typename T>//函数模板,使得下面定义的函数可以支持多种不同的形参,避免重载函数的函数体重复设计。
  bool operator()(
    const T *const abc, // 模型参数,有4维
    T *residual) const//重载运算符()
     {
    residual[0] = T(_y) - ceres::exp(abc[0] * T(_x) * T(_x) + abc[1] * T(_x) + abc[2])- abc[3] * T(_x) ;//y-exp(ax^2+bx+c)-dx)
    return true; //返回bool类型,计算结果已经存入函数外的residual变量中
  }
  const double _x, _y;    // x,y数据
};

int main(int argc, char **argv) {
  double ar = 1.0, br = 2.0, cr = 1.0, dr=2.0;         // 真实参数值
  double ae = 2.0, be = -1.0, ce = 5.0, de=-1.0;       // 估计参数值
  int N = 100;                                         // 数据点
  double w_sigma = 1.0;                                // 噪声Sigma值
  double inv_sigma = 1.0 / w_sigma;                    //标准差的逆
  cv::RNG rng;                                         // OpenCV随机数产生器 RNG为OpenCV中生成随机数的类,全称是Random Number Generator

  vector<double> x_data, y_data;      // 数据 double数据x_data, y_data
  for (int i = 0; i < N; i++) {
    double x = i / 100.0;//相当于x范围是0-1
    x_data.push_back(x);//x_data存储的数值 所给的100个观测点数据
    y_data.push_back(exp(ar * x * x + br * x + cr) + dr * x  + rng.gaussian(w_sigma * w_sigma));
    //rng.gaussian(w_sigma * w_sigma)为opencv随机数产生高斯噪声
    //rng.gaussian(val)表示生成一个服从均值为0,标准差为val的高斯分布的随机数  视觉slam十四讲p133式6.38上面的表达式
  }

  double abc[4] = {ae, be, ce, de};//定义优化变量

  // 构建最小二乘问题
  ceres::Problem problem;//定义一个优化问题类problem
  for (int i = 0; i < N; i++) {
    problem.AddResidualBlock(     // 向问题中添加误差项
      // 使用自动求导,模板参数:误差类型,输出维度,输入维度,维数要与前面struct中一致
      new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 4>(
        new CURVE_FITTING_COST(x_data[i], y_data[i])
      ),
      nullptr,             // 核函数,这里不使用,为空  添加损失函数(即鲁棒核函数),这里不使用,为空
      abc                // 待估计参数 优化变量,4维数组
    );
  }

  // 配置求解器
  ceres::Solver::Options options;     // 这里有很多配置项可以填 定义一个配置项集合类options
  options.linear_solver_type = ceres::DENSE_NORMAL_CHOLESKY;   
  // 增量方程如何求解 增量方程求解方式,本质上是稠密矩阵求逆的加速方法选择
  options.minimizer_progress_to_stdout = true;   
  // 输出到cout minimizer_progress_to_stdout表示是否向终端输出优化过程信息

  ceres::Solver::Summary summary;                // 优化信息 利用ceres执行优化
  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  ceres::Solve(options, &problem, &summary);  // 开始优化
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve time cost = " << time_used.count() << " seconds. " << endl;

  // 输出结果
  cout << summary.BriefReport() << endl;
  cout << "estimated a,b,c,d= "; //输出估计值 a,b,c,d
  for (auto a:abc) cout << a << " ";
  cout << endl;

  return 0;
}

 CMakeLists.txt 

cmake_minimum_required(VERSION 2.8)
project(ch6)

set(CMAKE_BUILD_TYPE Release)
set(CMAKE_CXX_FLAGS "-std=c++14 -O3")

list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)

# OpenCV
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})

# Ceres
find_package(Ceres REQUIRED)
include_directories(${CERES_INCLUDE_DIRS})

# g2o
find_package(G2O REQUIRED)
include_directories(${G2O_INCLUDE_DIRS})

# Eigen
include_directories("/usr/include/eigen3")

add_executable(gaussNewton gaussNewton.cpp)
target_link_libraries(gaussNewton ${OpenCV_LIBS})

add_executable(ceresCurveFitting2 ceresCurveFitting2.cpp)
target_link_libraries(ceresCurveFitting2 ${OpenCV_LIBS} ${CERES_LIBRARIES})


add_executable(g2oCurveFitting2 g2oCurveFitting2.cpp)
target_link_libraries(g2oCurveFitting2 ${OpenCV_LIBS} ${G2O_CORE_LIBRARY} ${G2O_STUFF_LIBRARY})

执行结果:

iter      cost      cost_change  |gradient|   |step|    tr_ratio  tr_radius  ls_iter  iter_time  total_time
   0  1.568785e+06    0.00e+00    3.49e+06   0.00e+00   0.00e+00  1.00e+04        0    8.99e-05    2.38e-04
   1  1.990794e+05    1.37e+06    4.93e+05   8.33e+00   8.73e-01  1.71e+04        1    1.44e-04    5.17e-04
   2  1.974116e+04    1.79e+05    6.84e+04   1.09e+00   9.01e-01  3.54e+04        1    4.60e-05    5.87e-04
   3  7.916989e+02    1.89e+04    6.65e+03   6.94e+00   9.63e-01  1.06e+05        1    4.41e-05    6.47e-04
   4  6.835090e+01    7.23e+02    1.97e+02   4.28e+00   9.77e-01  3.18e+05        1    4.29e-05    7.07e-04
   5  5.525052e+01    1.31e+01    4.46e+02   5.62e+00   7.54e-01  3.66e+05        1    3.81e-05    7.59e-04
   6  5.097074e+01    4.28e+00    4.68e+00   1.85e-01   1.00e+00  1.10e+06        1    3.81e-05    8.12e-04
   7  5.096847e+01    2.27e-03    1.58e-02   2.53e-02   1.00e+00  3.30e+06        1    4.51e-05    8.73e-04
solve time cost = 0.000960992 seconds. 
Ceres Solver Report: Iterations: 8, Initial cost: 1.568785e+06, Final cost: 5.096847e+01, Termination: CONVERGENCE
estimated a,b,c,d= 0.889633 2.17262 0.944485 1.98114 

g2oCurveFitting2.cpp

#include <iostream>
#include <g2o/core/g2o_core_api.h>
#include <g2o/core/base_vertex.h>//g2o顶点(Vertex)头文件 视觉slam十四讲p141用顶点表示优化变量,用边表示误差项
#include <g2o/core/base_unary_edge.h>//g2o边(edge)头文件
#include <g2o/core/block_solver.h>//求解器头文件
#include <g2o/core/optimization_algorithm_levenberg.h>//列文伯格——马尔夸特算法头文件
#include <g2o/core/optimization_algorithm_gauss_newton.h>//高斯牛顿算法头文件
#include <g2o/core/optimization_algorithm_dogleg.h>//dogleg算法头文件
#include <g2o/solvers/dense/linear_solver_dense.h>//稠密矩阵求解
#include <Eigen/Core>//Eigen核心模块
#include <opencv2/core/core.hpp>
#include <cmath>
#include <chrono>

using namespace std;

// 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex : public g2o::BaseVertex<4, Eigen::Vector4d> //:表示继承,public表示公有继承;CurveFittingVertex是派生类,BaseVertex<3, Eigen::Vector4d>是基类
{
public://以下定义的成员变量和成员函数都是公有的
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW

  // 重置
  virtual void setToOriginImpl() override //virtual表示该函数为虚函数,override保留字表示当前函数重写了基类的虚函数
  {
    _estimate << 0, 0, 0, 0;
  }

  // 更新
  virtual void oplusImpl(const double *update) override {
    _estimate += Eigen::Vector4d(update);//更新量累加
  }

  // 存盘和读盘:留空
  virtual bool read(istream &in) {}//istream类是c++标准输入流的一个基类
  //可参照C++ Primer Plus第六版的6.8节

  virtual bool write(ostream &out) const {}//ostream类是c++标准输出流的一个基类
  //可参照C++ Primer Plus第六版的6.8节
};

// 误差模型 模板参数:观测值维度,类型,连接顶点类型
class CurveFittingEdge : public g2o::BaseUnaryEdge<1, double, CurveFittingVertex> {
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW//解决Eigen库数据结构内存对齐问题

  CurveFittingEdge(double x) : BaseUnaryEdge(), _x(x) {}//使用列表赋初值

  // 计算曲线模型误差
  virtual void computeError() override//virtual表示虚函数,保留字override表示当前函数重写了基类的虚函数
   {
    const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);//创建指针v
    const Eigen::Vector4d abc = v->estimate();//将estimate()值赋给abc
    _error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0)) - abc(3, 0) * _x;
    //视觉slam十四讲p133式6.39
  }

  // 计算雅可比矩阵
  virtual void linearizeOplus() override //virtual表示虚函数,保留字override表示当前函数重写了基类的虚函数
  {
    const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
    const Eigen::Vector4d abc = v->estimate();
    double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]) + abc[3] * _x;//视觉slam十四讲p133式6.38上面的式子
    _jacobianOplusXi[0] = -_x * _x * y;//视觉slam十四讲p133式6.40第一个
    _jacobianOplusXi[1] = -_x * y;//视觉slam十四讲p133式6.40第二个
    _jacobianOplusXi[2] = -y;//视觉slam十四讲p133式6.40第三个
    _jacobianOplusXi[3] = -_x;
  }

  virtual bool read(istream &in) {}

  virtual bool write(ostream &out) const {}

public:
  double _x;  // x 值, y 值为 _measurement
};

int main(int argc, char **argv) {
  double ar = 1.0, br = 2.0, cr = 1.0, dr=2.0;         // 真实参数值
  double ae = 2.0, be = -1.0, ce = 5.0, de=-1.0;        // 估计参数值
  int N = 100;                                 // 数据点
  double w_sigma = 1.0;                        // 噪声Sigma值
  double inv_sigma = 1.0 / w_sigma;            //标准差的逆
  cv::RNG rng;                                 // OpenCV随机数产生器

  vector<double> x_data, y_data;      // 数据
  for (int i = 0; i < N; i++) {
    //相当于x范围是0-1
    x_data.push_back(x);//x_data存储的数值 所给的100个观测点数据
    y_data.push_back(exp(ar * x * x + br * x + cr) + dr * x + rng.gaussian(w_sigma * w_sigma));
    //rng.gaussian(w_sigma * w_sigma)为opencv随机数产生高斯噪声
    //rng.gaussian(val)表示生成一个服从均值为0,标准差为val的高斯分布的随机数  视觉slam十四讲p133式6.38上面的表达式
  }

  // 构建图优化,先设定g2o
  typedef g2o::BlockSolver<g2o::BlockSolverTraits<4, 1>> BlockSolverType;  // 每个误差项优化变量维度为4,误差值维度为1
  typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型

  // 梯度下降方法,可以从GN, LM, DogLeg 中选
  auto solver = new g2o::OptimizationAlgorithmGaussNewton(
    g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
     //c++中的make_unique表示智能指针类型,而g2o中的make_unique表示
  g2o::SparseOptimizer optimizer;     // 图模型
  optimizer.setAlgorithm(solver);   // 设置求解器
  optimizer.setVerbose(true);       // 打开调试输出

  // 往图中增加顶点
  CurveFittingVertex *v = new CurveFittingVertex();//指针v
  v->setEstimate(Eigen::Vector4d(ae, be, ce, de));//ae、be、ce、de表示优化变量
  v->setId(0);//对顶点进行编号,里面的0你可以写成任意的正整数,但是后面设置edge连接顶点时,必须要和这个一致
  optimizer.addVertex(v);//添加顶点

  // 往图中增加边
  for (int i = 0; i < N; i++) {
    CurveFittingEdge *edge = new CurveFittingEdge(x_data[i]);
    edge->setId(i);//对边进行编号
    edge->setVertex(0, v);                // 设置连接的顶点
    //edge->setVertex(0, v); 其中的0为该边连接的第一个顶点,即前面编号为0的顶点v,因为是一元边,因此只需这一句。
    //根据函数公式:y=exp(ax^2+bx+c)+w可知,y为观测值,故有edge->setMeasurement(y_data[i])。图构建出之后,即可进行迭代求解
    edge->setMeasurement(y_data[i]);      // 观测数值
    edge->setInformation(Eigen::Matrix<double, 1, 1>::Identity() * 1 / (w_sigma * w_sigma)); // 信息矩阵:协方差矩阵之逆
    optimizer.addEdge(edge);//添加边
  }

  // 执行优化
  cout << "start optimization" << endl;//输出start optimization
  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  optimizer.initializeOptimization();//优化过程初始化
  optimizer.optimize(10);//设置优化的迭代次数
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve time cost = " << time_used.count() << " seconds. " << endl;

  // 输出优化值
  Eigen::Vector4d abc_estimate = v->estimate();
  cout << "estimated model: " << abc_estimate.transpose() << endl;

  return 0;
}

执行结果:

start optimization
iteration= 0	 chi2= 395400.237834	 time= 5.0745e-05	 cumTime= 5.0745e-05	 edges= 100	 schur= 0
iteration= 1	 chi2= 46668.610919	 time= 3.4935e-05	 cumTime= 8.568e-05	 edges= 100	 schur= 0
iteration= 2	 chi2= 1735.210242	 time= 8.606e-06	 cumTime= 9.4286e-05	 edges= 100	 schur= 0
iteration= 3	 chi2= 135.874544	 time= 8.396e-06	 cumTime= 0.000102682	 edges= 100	 schur= 0
iteration= 4	 chi2= 109.507970	 time= 8.466e-06	 cumTime= 0.000111148	 edges= 100	 schur= 0
iteration= 5	 chi2= 101.983966	 time= 8.415e-06	 cumTime= 0.000119563	 edges= 100	 schur= 0
iteration= 6	 chi2= 101.937085	 time= 8.386e-06	 cumTime= 0.000127949	 edges= 100	 schur= 0
iteration= 7	 chi2= 101.936983	 time= 8.426e-06	 cumTime= 0.000136375	 edges= 100	 schur= 0
iteration= 8	 chi2= 101.936980	 time= 8.346e-06	 cumTime= 0.000144721	 edges= 100	 schur= 0
iteration= 9	 chi2= 101.936980	 time= 8.256e-06	 cumTime= 0.000152977	 edges= 100	 schur= 0
solve time cost = 0.00130745 seconds. 
estimated model: 0.889889  2.17192 0.945022   1.9763

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙有肥鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值