理论学习
我们想学习3D视觉,首先要了解相机的成像原理,这里比较重要的知识点就是相机的内参与外参。具体可以参考大佬写的文章:坐标系与相机参数
实际操作中,我们从相机中获得的数据往往是RGB-D的形式,也就是颜色图+深度图。但是仅看深度图还是不够直观,我们希望将其渲染成点云,以三维的形式在计算机中显示。在实操之前,可以先了解一下基础知识:深度图与点云
从相机获取点云
接下来以Open3D为例,展示如何处理从相机获取的信息
如果你和我一样用的是Realsense相机的话,可以参考这篇文章
"""
这里的深度图与RGB图分别由相机取得,不同相机有不同获取方式
"""
import open3d as o3d
depth = o3d.geometry.Image(depth_image)
color = o3d.geometry.Image(color_image)
rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(color, depth, convert_rgb_to_intensity=False)# 从颜色和深度图像制作RGBDImage的功能
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd, pinhole_camera_intrinsic)# 通过RGB-D图像和相机创建点云,并导入摄像机的固有参数
pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])# 将转换(4x4矩阵)应用于几何坐标。
o3d.visualization.draw_geometries([pcd])
基于Open3D的点云操作
获取点云后,我们就可以对其作一系列的可视化、交互等操作了
这里总结了一些资料:
-
点云窗口交互其中
o3d.visualization.VisualizerWithEditing()
也可用于交互操作 -
变换视角
这里需要注意的是我们在变换视角后,使用o3d.visualization.Visualizer().capture_depth_float_buffer()
获取的深度图是不能直接使用的,因为我们在可视化过程中变换了相机的视角,由此相机的内参及外参都发生了相应的变换,所以我们在保存深度图的同时,还需要利用o3d.visualization.Visualizer().get_view_control().convert_to_pinhole_camera_parameters()
来获取此视角下的内外参。再作反变换就能获取真实值。def drop_image(pcd): vis = o3d.visualization.Visualizer() vis.create_window("Pointcloud", 640,480, visible=False) vis.add_geometry(pcd) vis.update_geometry(pcd) vis.poll_events() vis.update_renderer() img = vis.capture_screen_float_buffer() img = np.array(img) img = cv2.cvtColor(img * 255, cv2.COLOR_BGR2RGB).astype(np.uint8) depth = vis.capture_depth_float_buffer() depth = (np.asarray(depth)).astype(np.float32) convert_matrix = vis.get_view_control().convert_to_pinhole_camera_parameters() return img, depth, convert_matrix
-
估计法向量并指定朝向
获取法向量后,我们往往需要将其转换为欧拉角或者四元数。这里推荐一个非常好用的工具:scipy.transform.Rotation
具体用法可以参考链接。