在人工智能领域,大语言模型(LLMs)是根据预训练数据集进行”学习“,获取可以拟合结果的参数,虽然随着参数的增加,模型的功能也会随之增强。但无论专业领域的小模型,还是当下最火、效果最好的大模型,都有一个共同的劣势:无法准确/正确地回答出训练数据集以外(区别于验证集和测试集的新增数据,如实时新闻、未公开的企业信息等)的结果,进而编造答案进行回复,即大模型幻觉问题。
为了解决上述问题,同时避免微调/重新训练带来的成本,LLMs插件应运而生。 通过LLMs强大的内容生成能力和上下文理解能力,结合插件提供的数据以及特定功能,不仅拓宽了LLMs的应用领域,还增加了LLMs生成结果的可信度,更好地服务于使用者。
1.插件
插件是一种软件组件,它可以被添加到一个主要的应用程序或系统中,以扩展其功能或提供额外的特性。插件通常被设计成可独立安装和卸载,并且可以与主应用程序进行交互。插件的功能取决于所应用的领域和具体的应用程序,在AIGC快速发展的今天,大语言模型插件异军突起,改变了插件存在的形态,这也是本篇文章重点的研究对象。结合当前大语言模型插件的发展,插件分类如下:

1.1 传统插件
传统插件(Plug-in,又称addin、add-in、addon或add-on,又译外挂)是一种遵循一定规范的应用程序接口编写出来的程序。其只能运行在程序规定的系统平台下(可能同时支持多个平台),而不能脱离指定的平台单独运行,即插件的运行依赖于宿主软件,无差别地启用或禁用插件功能。传统插件可分为浏览器插件和客户端软件插件,传统插件的存在形态如下图所示。

最低0.47元/天 解锁文章
1101

被折叠的 条评论
为什么被折叠?



