conda配置R虚拟环境及导入R包

本文介绍了conda的环境管理,包括如何下载与安装conda、配置国内镜像加速、创建与激活环境、安装及卸载软件包。详细步骤指导了如何创建指定版本的R环境,并安装Seurat及其依赖。此外,还提到了通过环境文件进行环境配置和迁移的方法,以实现环境的快速复用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

conda可用于包管理与核心管理,允许用户方便在不同版本、不同环境中相互转化。适合在超算平台上使用。

配置方法

有俩种。

其中一种是手动配置环境(小白更容易接受);

另外一种是通过环境文件创建conda虚拟环境(这个更方便分享)

下载conda

linux版本:

#下载conda
wget -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda2-latest-Linux-x86_64.sh

#安装conda
bash Miniconda2-latest-Linux-x86_64.sh

#赋权限 并执行
chmod 777 Miniconda3-latest-Linux-x86_64.sh   
bash Miniconda3-latest-Linux-x86_64.sh

配置镜像

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda
conda config --set show_channel_urls yes
conda config --show

基本环境管理

conda info --envs # 查看环境
 
conda create -n myenv  # 创建一个myenv的环境
 
source activate myenv  # 激活进入 myenv环境
 
conda deactivate # 退出当前环境
 
conda env remove --name myenv # 移除环境

conda uninstall xxx   //卸载xxx包

安装软件

#以搜索R软件为例,查看是否存在以及版本
conda search R

conda info                    # 查看默认环境和缓存默认路径
conda info --envs             # 查看环境种类
conda create -n R4.1.2 r-base=4.1.2       # 创建名为R4.1.2的环境(包含R4.1.2版本的环境)
source activate R4.1.2  
conda list                    # 查看当前安装的软件
conda install r-base=4.1.2    # 安装R语言
conda install r-string        # R包 以 r- 开头 
conda deactivate              # 退出当前环境

导入Seurat包

conda install r-seurat=4.0.0 -y

source activate 环境后,再打开R,通过library()验证一下。

导入SeuratData包,直接使用install.package()导入失败。

#导入SeuratData包
install.package("remotes")
remotes::install_github("satijalab/seurat-data")
library(SeuratData)

法②:通过环境文件配置conda

环境文件(environment.yml):在conda中安装一个老版本bwa,每个包都按照package=version来构建,

name: bwa_old
channels:
  - bioconda
dependencies:
  - bwa=0.7.15

操作

wget https://raw.githubusercontent.com/davetang/reproducible_bioinformatics/master/environment.yml

conda env create --file environment.yml  #创建

conda activate bwa_old   #激活

更新:

迁移已配置环境至新环境中

首先导出环境文件environment.yml

# 在已配置环境中导出配置文件
conda env export > environment.yml

# -n 新环境中的环境名;-f 之前导出的配置文件
conda env create -n seurat4 -f environment.yml
# 查询相关版本的信息
conda search r-rcpp=1.0.7 --info

是否默认进入base环境 

#修改默认配置
conda config --set auto_activate_base false	# 默认不进入base环境
conda config --set auto_activate_base true	# 默认进入base环境

参考:

SeuratData包无法安装的解决办法_m0_62585245的博客-CSDN博客

conda 基于python3.8安装R语言4+Seurat4_黄树茂博客-CSDN博客_conda 安装r语言
Introduction to Conda

### 如何在 Ubuntu 20.04 中将通过终端安装的导入Conda 虚拟环境中 要在 Ubuntu 20.04 上实现从系统范围的 Python 环境或通过终端安装的导入Conda虚拟环境中,可以按照以下方式操作: #### 方法一:手动复制已安装的 如果某些已经通过系统的 `pip` 安装,则可以通过以下命令将其列表导出并重新安装到 Conda 环境中。 1. **导出当前系统中的 pip 清单** 使用以下命令获取当前系统范围内安装的所有及其版本号: ```bash pip freeze > requirements.txt ``` 2. **激活目标 Conda 虚拟环境** 切换至所需的 Conda 环境: ```bash conda activate your_env_name ``` 3. **在 Conda 环境中安装这些** 将之前保存的 `requirements.txt` 文件用于批量安装所需: ```bash pip install -r /path/to/requirements.txt ``` 此过程会尝试将所有记录于 `requirements.txt` 的安装到指定的 Conda 环境中[^1]。 #### 方法二:利用 Conda 导入外部 对于一些无法直接通过上述方法解决的情况(例如特定编译需求),可考虑如下步骤: 1. **定位系统范围内的位置** 查找某个具体库的位置以便后续处理。例如查找 NumPy 库所在目录: ```python import numpy as np print(np.__file__) ``` 2. **拷贝相关文件进入 Conda 环境** 手动将找到的目标模块复制到对应的 Conda 环境路径下。假设要迁移的是 `/usr/lib/python3/dist-packages/numpy` 至名为 `myenv` 的 Conda 环境: ```bash cp -R /usr/lib/python3/dist-packages/numpy ~/miniconda3/envs/myenv/lib/python3.x/site-packages/ ``` 注意替换实际路径以及调整对应 Python 版本号[^2]。 #### 解决可能遇到的问题——Conda 初始化错误 当启动新的 Terminal 或者切换不同 Shell 类型时可能会碰到类似于下面这样的报错提示:“ERROR REPORT”,这通常是因为 `.condarc` 配置存在问题所致。检查配置项是否合理设置比如: ```yaml changeps1: False auto_update_conda: False offline: True ``` 其中参数解释分别代表不改变 PS1 提示符、关闭自动更新功能以及启用离线模式运行[^3]。 以上便是针对如何把由 Ubuntu 终端里头所安裝之套件移转至 Conda 假想空间內的方法说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值