客户案例|AI Agent如何让智能客服理解更准确,对话更自然

为提高接待效率,减轻人工座席的服务压力,过去几年许多企业都在客户接待的过程中用上了文本机器人,并将其作为第一道服务接待。

企业的目的是,期望文本机器人能够回答大部分简单、重复、标准化的问题。但实际应用中,大多数企业的文本机器人使用效果都不理想。

以天润融通服务的一家跨国电气公司为例。

该企业的文本机器人进行服务时,有20%的客户接入便要求直接转人工;剩下80%的客户中,还有高达76%的客户会在完成一两轮对话后发出“转人工”的要求。

即综合来看,文本机器人的问题解决率仅有不到20%,超过80%的问题,仍然由人工座席完成服务。

为了解决这个问题,该企业与天润融合作,用基于大模型的智能体对传统的文本机器人进行改造。改造之后,智能客服问题解决率,客户满意度都有了明显改善。

今天我们以这家企业为例,看看与传统文本机器人相比,基于大模型的AI Agent(智能体)有哪些优势。

01 传统文本机器人的局限

之所以绝大多数客户都会选择避开机器人客服而直接转人工,问题主要有两个方面。

首先文本机器人理解能力有限。

作为电气类企业,这家企业的产品结构十分复杂,不同型号、不同规格的产品多达数百种。咨询过程中,许多客户并不会严格地说明产品名称和型号,而是会根据工作中常用的称呼、简称,或者缩写,因此文本机器人几乎很难准确地识别问题。

同时,当问题涉及一些机械故障时,客户也很难识别问题原因,只能通过描述问题现象,让客服帮忙判断。

而传统文本机器人只能依靠提前设定的FAQ进行回答,因此无法与客户进行自然交流,更无法辅助判断问题原因。

其次,传统文本机器人维护难度大,成本高。

传统文本机器人依靠提前设定的FAQ进行回答。在合格的配置中,一个标准问题通常需要匹配20个不同的相似问题,如果要提高回答准确率,通常需要将问题匹配到30个左右。

而电气企业数百款产品,几千个型号,相关问题配置可以达到上万个,维护如此庞大的FAQ和企业知识库对企业来说是一个巨大的成本支出。

这也导致该企业在FAQ配置上一直存在较多缺陷。

比如在知识库配置上,该公司50%的知识库只有一条语料,无法满足基础的应答。比如在语料占比上,该企业一个标准问题仅对应5个相似问。

同时,在该企业的知识库中,还存在许多低频问题和重复问题。这些也都增加了知识库的维护成本。

而这一系列的问题,都为文本机器人带来挑战,让它无法有效地服务客户。

02 用智能体替代传统机器人

了解问题后,天润融通基于AI大模型对原本的文本机器人进行了升级改造。

我们先来看几个改造后的案例:

客户提出一个问题,智能客服不仅能够针对问题进行解释,而且方便客户理解,它还能自己画出表格,简化信息表达。

同样提出一个问题,智能客服不仅立刻理解,还顺便发出了一张电脑的操作指引的截图,让客户一眼看懂如何进行操作。

除此之外,这个智能客服的情商还非常高,在遇到它看不懂的复杂问题的时候,它能够自动进行追问,引导客户逐步提出核心问题,并帮助解决。

甚至在遇到产品故障时,它还能帮助客户分析故障原因,并给出针对性的解决方案。

显而易见,从体验效果上,升级后的智能客服与原本刻板的文本机器人完全不同。这是因为改造之后,驱动智能客服的已经不再是传统的文本机器人,而是基于大模型的AI Agent 即智能体。

从示例可以看到,基于大模型的智能体能够与客户进行自然语言对话。

客户提出问题,智能体能够像人与人对话一般进行回答,遇到复杂的问题,它还能自动归纳画出表格进行示意,让整个交互更加人性化。

其次,智能体拥有意图识别能力。

即使客户说一些简称、缩写、或者约定俗称的名字,智能体也能精准地识别。这极大地提高了问题问答的准确率,增加了客户体验。

从该企业目前的使用来看,智能体回答问题的准确率在85%以上。

第三,智能体能够实现文档问答。

与传统文本机器人需要通过人工将企业文档中的知识点拆解出来形成FAQ不同,在使用智能体的过程中,企业只需要将相关文档上传知识库,智能体能够直接读取文档并理解其中的信息,然后通过这些信息与客户进行对话。

这也是为什么在前面的展示中,智能体在遇到一些专业问题时,能够第一时间给出资料图片和相关示意图的原因。

这些资料就是智能体从企业文档中直接提取出来的。通过这种方式,智能体也提高了与客户之间的对话效率,增加了信息传播层次,并且更加方便客户理解。

除此之外,随着文本机器人转变成智能体,原本的FAQ整理,知识库维护的工作也大大减少,这极大地降低了企业成本和人工座席的工作量。

目前,天润融通的智能体已经在互联网、机械制造等多个行业中得到广泛应用。关注我们,后续带来更多行业智能体的最佳实践案例。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《AI大模型入门+进阶学习资源包**》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值