基于GWO-ELM的变压器故障诊断研究(Matlab代码实现)

本文探讨了将灰狼优化算法(GWO)与极限学习机(ELM)融合在变压器故障诊断中的应用,描述了从数据采集到模型训练的详细流程,强调了GWO优化在参数选择上的优势,以及这种方法如何提高诊断准确性和效率。
摘要由CSDN通过智能技术生成

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


💥1 概述

GWO-ELM是融合了灰狼优化(Grey Wolf Optimizer, GWO)算法和极限学习机(Extreme Learning Machine, ELM)的智能算法。在变压器故障诊断领域,GWO-ELM可以提供一种新的方法来提高故障诊断的准确性和效率。

### 灰狼优化(GWO)

灰狼优化算法是一种群体智能算法,它模拟了灰狼的社会等级和狩猎行为。在这个算法中,灰狼被分为四种角色:领头狼(Alpha)、副狼(Beta)、普通成员狼(Delta)和最低级狼(Omega)。通过模拟灰狼的领地意识、包围猎物和攻击猎物的过程,GWO算法寻找全局最优解。

### 极限学习机(ELM)

极限学习机是一种快速的单层前馈神经网络训练方法。其基本思想是随机选择输入层到隐藏层的权重和偏置,计算隐藏层的输出,然后直接计算出输出层权重。ELM通常在小样本训练中表现出色,并且计算效率很高。

### 基于GWO-ELM的变压器故障诊断研究

在变压器故障诊断中,通常需要分析变压器油中的溶解气体分析(Dissolved Gas Analysis, DGA)数据来检测故障。这是因为变压器中的故障常常伴随着不同类型的气体被产生。

GWO-ELM算法可以这样被应用于变压器故障诊断:

1. **数据采集和预处理**:收集变压器的DGA数据,并对其进行预处理,如归一化,以适应神经网络的输入。

2. **初始化ELM**:随机初始化极限学习机的参数,包括输入权重、偏置和隐藏神经元的数目。

3. **GWO优化**:利用GWO算法来优化ELM模型的参数。优化的目标通常是最小化预测输出和实际输出之间的误差。

4. **训练与验证**:用部分数据集训练GWO-ELM模型,并使用其他数据集来验证模型的性能。通常会监控模型在诊断变压器故障时的准确率、召回率等指标。

5. **故障诊断**:一旦模型被训练好,它可以被用来预测新的DGA数据样本,从而实现变压器故障的实时诊断。

研究基于GWO-ELM的变压器故障诊断涉及对GWO和ELM算法的深入理解,以及如何将这两种算法有效融合以处理实际问题。此外,这还涉及到对变压器DGA数据和故障机制的深刻认识,以便更好地设计和调整GWO-ELM模型来提高故障诊断的准确性。

该方法的优点在于它结合了GWO的全局搜索能力和ELM的快速学习能力,有可能在变压器故障诊断领域提供一种高效和精准的解决方案。然而,这样的研究也需要大量的实验数据来验证模型的有效性,并可能涉及到复杂的参数调整和优化过程。

针对ELM模型性能受初始输入权值和隐含层偏置的影响,运用灰狼算法进行优化选择,选择不同气体作为输入,故障类型作为输出,进行变压器故障诊断。

针对ELM模型性能受初始输入权值和隐含层偏置影响的问题,我们引入了灰狼算法进行优化选择。在这个过程中,我们将不同气体作为输入特征,将故障类型作为输出标签,以实现对变压器故障的准确诊断。

首先,我们意识到ELM模型在初始参数设置方面的敏感性,这可能导致模型在训练过程中陷入局部最优解。为了克服这一挑战,我们引入了灰狼算法,其全局搜索能力有助于更好地探索参数空间,并找到更优的初始参数设置。

通过将不同气体的含量作为输入特征,我们能够捕捉到变压器内部的微观状态变化,这有助于提高诊断的准确性和可靠性。同时,将故障类型作为输出标签,则使得模型能够学习并预测变压器可能出现的各种故障类型,从而帮助维护人员更及时地采取相应的修复措施。

在整个诊断过程中,我们采用了交叉验证等方法来评估模型的性能,并不断优化模型以提高其泛化能力和稳健性。这种基于GWO-ELM的变压器故障诊断方法不仅能够有效地解决参数设置不确定性带来的挑战,还能够充分利用DGA数据中的信息,为变压器故障的早期检测和诊断提供了一种可靠的解决方案。

总的来说,这种方法不仅在理论上具有可行性,而且在实际应用中也表现出了很好的效果。然而,我们也意识到在实际应用中仍然需要进一步验证和优化,以确保其在各种工程场景下的可靠性和稳定性。

📚2 运行结果

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]徐伟进,徐炜彬,张炜华,等.基于NRS的GWO-SVM变压器故障诊断方法研究[J].电工电气, 2022(002):000.

[2]雷家浩,包永强,钱玉军,等.基于DGA与IGWO-WELM的变压器不平衡故障诊断研究[J].现代电子技术, 2023(24):105-108.

[3]张静.基于SOM的变压器故障诊断研究[J].电力学报, 2014(4):4.DOI:CNKI:SUN:DILY.0.2014-04-010.

🌈4 Matlab代码、数据

  • 17
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
混合gwo-elm模型是一种结合了灰狼优化算法(Great Wolf Optimization, GWO)和极限学习机(Extreme Learning Machine, ELM)的机器学习模型。 灰狼优化算法是一种模拟灰狼社会行为的优化算法。通过模拟灰狼的寻食行为和领地争夺,优化算法可以从搜索空间中找到最优解。在混合gwo-elm模型中,GWO被用于优化极限学习机的参数。通过灰狼优化算法的搜索能力,可以加速极限学习机的训练过程,提高其性能。 极限学习机是一种单隐层前馈神经网络算法,其特点是随机初始化隐层神经元的权值和偏置,并固定它们不再更新。在传统的极限学习机中,这些参数是通过随机初始化得到的。然而,在混合gwo-elm模型中,GWO会通过搜索过程对这些参数进行优化,使得极限学习机能够更好地适应数据的特点。 混合gwo-elm模型的训练过程主要包括两个部分:灰狼优化算法和极限学习机。首先,使用灰狼优化算法初始化权值和偏置,并通过迭代的方法更新这些参数。在每次迭代中,GWO会通过模拟灰狼的寻食行为来优化参数,直到满足停止条件。然后,使用更新后的参数来构建极限学习机模型,从而实现对输入数据的学习和预测。 混合gwo-elm模型的优点是能够结合两种优化算法的优点,提高模型在大规模数据和高维数据上的性能。同时,通过灰狼优化算法的搜索能力,可以更快地找到最优解。然而,这种方法的缺点是需要更多的计算资源和时间来完成训练过程。 总之,混合gwo-elm模型是一种结合了灰狼优化算法和极限学习机的机器学习模型,通过优化极限学习机的参数提高其性能。这种模型在大规模数据和高维数据的学习和预测任务中具有较好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值