单细胞转录组测序(scRNA-seq)通过解析单个细胞的基因表达异质性,实现了高分辨率细胞图谱的系统构建。然而,传统分析框架(如亚群注释、差异表达分析等)仅停留在“描述性研究”层面,难以解析细胞群体间动态调控的分子机制。在此背景下,细胞通讯分析成为突破这一局限的核心方向,为阐释疾病发生、发育调控等生物学过程提供理论指导。
一. 什么是细胞通讯?
细胞通讯分析利用单细胞转录组数据,以细胞亚群的基因表达量数据为研究对象,借助配体-受体关系数据库,系统识别不同细胞类型中配体与受体的表达及配对模式,进而推断细胞间的潜在相互作用,最终揭示组织在生理稳态中的调控机制及其在疾病状态下的异常变化。
二. 分析软件的区别
随着单细胞测序技术的快速发展,目前已有多种工具能够做到在单细胞水平上系统地解析细胞间通信网络及功能。为了更好的帮助大家准确且快速的找到适合自己的工具及展现形式,接下来小爱会对目前市面上最常用的几种方法进行介绍。
三. 细胞分析内容
在众多细胞通讯分析工具中,小爱后台默认选择的分析工具是CellChat,接下来将着重介绍一下该分析工具相关的内容。
CellChat的优势:
1)分析思路更全面:计算配体-受体相互作用时不仅考虑了配体和受体的结构组成,还考虑了辅因子以模拟细胞通讯;
2)详细的报告解释:CellChat包含的结果比较多,一键分析配套对应的分析报告,让您快速了解各部分分析图表的含义;
3)图形调整功能:可通过一键分析的结果随意调整感兴趣Source,Target细胞群及感兴趣的通路,以及颜色设置等多种功能,因此作为目前市面上最主流的分析工具。
CellChat是一个能够从单细胞RNA测序(scRNA-seq)数据中定量分析细胞间通讯网络的R包,它需要细胞的基因表达数据作为输入,并通过整合基因表达与信号配体、受体及其辅助因子之间的相互作用来建立细胞与细胞交流的概率,进而对细胞间通讯做出预测,并提供多种可视化结果。
CellChat的主要分析内容如下:
1)配体-受体相互作用:CellChat分析每个细胞类型表达的配体和受体之间的相互作用,了解细胞如何通过配体与受体结合来传递信号。
2)信号通路活性:通过分析不同细胞类型之间的信号通路,可以揭示哪些信号通路在特定生物学过程中起作用,如细胞分化、免疫反应或疾病状态等。
3)细胞间网络构建:CellChat构建细胞间的网络图,显示不同细胞类型之间的相互作用方式,帮助识别主要的信号发送者和接收者,以及哪些细胞在组织中起主导作用。
4)定量分析:通过计算细胞通讯的强度(如配体-受体结合的概率),可以定量分析不同细胞类型之间的通讯强度,揭示在特定条件下,哪种细胞类型在通讯中占主导地位。
5)功能富集分析:CellChat分析可以与功能富集分析结合使用,探讨哪些生物学功能或通路受到特定细胞通讯的调控。
CellChat分析流程如下图所示:
a) 配体-受体相互作用数据库的概述:CellChat数据库是该工具的核心知识库,通过整合KEGG通路、已发表文献及实验验证数据,最大的特色是还系统收录了2021种已验证的L-R对,包括60%的分泌相互作用(secretinginteractions)和48%的相互作用涉及异质分子复合物。该数据库涵盖四大作用模式:分泌信号、细胞-细胞接触、胞外基质-受体互作及异源多聚体。除外,还纳入辅助因子(如激动剂/拮抗剂)及多亚基受体复合物(如共刺激/抑制受体),确保对信号通路的分子机制进行多层次建模。
b) 单细胞数据输入与预处理:CellChat支持两种数据输入方式,一种是输入原始的细胞基因表达矩阵,另外一种是输入细胞注释的meta信息,预处理会先在每个类群细胞中鉴定过表达的基因,最终构建以细胞群为单元的基因活性矩阵,为通讯建模提供标准化输入。
c)细胞通讯模型计算:CellChat会基于质量作用定律(lawofmassaction)量化细胞群间的通讯概率,并识别重要通信:通过联合计算配体(Ligand)与受体(Receptor)的表达强度,生成通路级通讯活性,最终推断出统计学和生物学上显著的细胞通信。
d) 细胞通讯结果可视化提供了三种模式:层次图(hierarchyplot),圈图(Circleplot),气泡图(bubbleplot)。
e) 细胞通讯模式分析:CellChat通过图论、模式识别和流形学习等方法对网络进行定量测量,从而更好地解释细胞间通信网络。使用网络中心性分析识别细胞的信号角色,发现主要的细胞通讯模式,信号通路拓扑和功能相似性的分类。除了分析单个数据集,CellChat还可以跨不同条件识别共享的和特定于上下文的信号,如不同的发育阶段和生物条件。
CellChat分析概述[1]
四. 分析内容可视化与解读
-
4.1 受体-配体层次网络可视化
(1)细胞间受体配体可视化
左图为任意两个细胞组之间的相互作用次数网络图,右图为任意两个细胞组之间的相互作用强度网络图。不同颜色的实心圆表示不同细胞群,实心圆大小与该细胞群对应的细胞数成正比,每条边的颜色与信号发送者保持一致,边越粗表示通讯强度越强。
细胞间相互作用网络图[2]
(2)配受体对分析
根据细胞互作分析,我们确定了关键的细胞通讯关系对,接着我们继续研究细胞对中配受体对的表达丰度,从而研究关键细胞对的通讯关系是由哪些配受体对的基因主导调控,进一步实现从细胞互作到分子调控机制的研究。配受体可视化,可以展示两种不同的绘图方式,气泡图或者弦图。
气泡图:横轴为不同细胞群关系对(source>target),纵轴为配受体关系对。点的颜色表示通讯概率高低,点的大小表示P值的高低。
Inflam信号传导的重要配体-受体对[1]
弦图:与气泡图结果一致,弦图也是显示从某些细胞群到其他细胞群的所有相互作用(L-R对)。弦图分为上下两部分,其中下半部分为配体,上半部分为受体,不同细胞群使用不同的颜色进行区分。内条大小与目标接收的信号强度成正比。
肿瘤免疫逃逸过程中CXCL12信号传导的重要配体-受体对
-
4.2 信号通路层面可视化展示
(1)信号通路中分泌信号对比展示
分泌传导物质的方式主要可以分为autocrine(自分泌)/paracrine(旁分泌)。每个颜色的点就代表一个细胞群,实心代表Source、空心代表Target,每一条线的粗细代表连结强度。如果Source/Target颜色相同,自己连到自己且无其他连出去的路径则代表是autocrine,而若连到很多别的颜色则可能代表传导路径当中是paracrine的形式传递物质。下图以信号通路TGFβ作用于成纤维细胞为例,左侧的Source中的FIB-A-I代表9个成纤维细胞组,右侧的Source代表着受TGFβ信号介导的细胞组,如内皮细胞、T细胞、B细胞等。a图主要反映的是成纤维细胞不同亚群间信号传导过程,b图主要反映成纤维细胞通过TGF-β信号协调免疫反应的过程。
创伤修复过程中信号通路TGFβ介导图[1]
热图:热图表示该通路下不同细胞群间的通讯概率。横纵坐标轴对应的柱状图为对应热图数据的加和。
创伤修复过程中信号通路TGFβ介导图[1]
每对配体-受体对TGFβ信号通路整体通信网络的相对贡献
创伤修复过程中信号通路TGFβ介导图[1]
(2)信号通路-细胞通讯相似性分析
CellChat能够量化所有重要信号通路之间的相似性,并根据它们的细胞通讯网络相似性对它们进行分组。分组可以基于功能或结构相似性进行。功能相似性:功能相似度高表示主要发送者和接收者相似,可以解释为两个信号通路或两个配体-受体对表现出相似和/或冗余的作用。功能相似性分析要求两个数据集之间的细胞群体组成相同。结构相似性:使用结构相似性来比较它们的信号网络结构,而不考虑发送者和接收者的相似性。左图表示基于功能相似性降维聚类结果,右图表示基于结构相似性降维聚类结果。图中不同的点表示不同的信号通路,距离越近表示具有相似的通讯网络。
细胞通讯相似性分析[1]
(3)细胞通讯模式识别
CellChat通过将配体-受体互作依据文献知识库归类至200余条信号通路,系统解析细胞间通讯网络的层级化结构。在传出通讯模式(Outgoing patterns)中,如图g所示,左侧列出成纤维细胞、肌成纤维细胞、内皮细胞等不同细胞组,中间不同颜色区域代表Pattern1-5这5种通讯模式,线条从细胞组指向模式区域体现其采用各模式通讯的程度,右侧列出TGFβ、WNT等信号传导分子,线条从模式区域指向信号分子表明不同模式下的主要信号分子。在传入通讯模式(Incoming patterns)中,如图h所示,左侧列出不同细胞组,这些细胞均在创伤修复过程中发挥着不同的功能,中间不同颜色区域为Pattern1-5通讯模式,线条从这些区域指向细胞组,粗细体现靶细胞接收对应模式信号的程度。右侧列出TGFβ、BMP等信号传导分子,其线条指向通讯模式区域,如TGFβ主要参与Pattern1模式,表明靶细胞接收该信号时依此模式进行信息接收与反应,以在创伤修复等过程中发挥功能。
创伤修复过程中细胞通讯模式识别[1]
在众多细胞通讯分析工具中,CellChat凭借其系统化的分析框架、多维可视化能力及对信号通路分子机制的深度解析,已成为国际高分期刊广泛认可的核心工具。需要注意的是:受数据库的限制,目前细胞通讯还是只能用在人和小鼠的研究中,但希望在不久的将来,细胞通讯也能应用到植物以及其他的物种。若您的课题涉及细胞通讯机制解析(如肿瘤微环境互作、干细胞生态位调控、神经-免疫系统对话等),欢迎通过文末联系方式咨询小爱!
-
参考文献
[1]Jin S, Guerrero-Juarez CF. et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021 Feb 17;12(1):1088.[2]Fang Z, Tian Y. et al.Single-Cell Transcriptomics of Proliferative Phase Endometrium: Systems Analysis of Cell-Cell Communication Network Using CellChat. Front Cell Dev Biol. 2022 Jul 22;10:919731.