【风电功率预测】【多变量输入单步预测】基于VMD-CNN-LSTM的风电功率预测研究(Matlab代码实现)

                💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、VMD-CNN-LSTM模型概述

三、模型结构与实现步骤

四、多变量输入单步预测

五、研究展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于VMD-CNN-LSTM的风电功率预测研究

一、研究背景与意义

风电作为一种清洁、可再生的能源形式,在全球能源结构中扮演着越来越重要的角色。然而,风电出力具有高度的不稳定性,其功率输出受风速、风向、温度等多种因素影响,难以准确预测。准确预测风电功率对于电力系统的稳定运行、风电并网的优化调度以及风电场的经济效益都具有重要意义。

二、VMD-CNN-LSTM模型概述

VMD-CNN-LSTM模型是一种结合了变分模态分解(VMD)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的组合预测模型。该模型通过VMD将原始风电功率序列分解为多个内在模态分量(IMF),每个IMF对应不同的时间尺度特征;然后利用CNN从每个IMF中提取局部特征;最后通过LSTM捕捉这些特征中的时间序列关系,实现风电功率的预测。

三、模型结构与实现步骤

  1. VMD层
    • 输入:原始风电功率时间序列。
    • 处理:通过VMD算法将时间序列分解为多个IMF。
    • 输出:多个IMF分量。
  2. CNN层
    • 输入:VMD层输出的每个IMF分量。
    • 处理:每个IMF分量通过卷积层、激活函数(如ReLU)和池化层(如最大池化)等结构提取局部特征。
    • 输出:提取后的特征向量。
  3. LSTM层
    • 输入:CNN层输出的特征向量。
    • 处理:LSTM层通过其独特的门控机制(遗忘门、输入门和输出门)控制信息的流动,捕捉时间序列数据中的长期依赖关系。
    • 输出:隐藏状态向量,该向量包含了风电功率序列的时序特征。
  4. 输出层
    • 输入:LSTM层输出的隐藏状态向量。
    • 处理:通过全连接层将隐藏状态向量映射为风电功率的预测值。
    • 输出:风电功率的预测结果。

四、多变量输入单步预测

在基于VMD-CNN-LSTM的风电功率预测中,可以引入多变量输入以进一步提高预测精度。这些多变量可能包括风速、风向、温度、湿度、气压等气象数据以及历史风电功率数据等。

  • 数据预处理:对多变量输入数据进行清洗、缺失值处理、归一化等预处理步骤,以确保数据的一致性和可比性。
  • 模型训练:将预处理后的多变量输入数据输入到VMD-CNN-LSTM模型中进行训练。模型在训练过程中会自动学习输入变量与风电功率之间的关系,并优化其预测性能。
  • 预测输出:在模型训练完成后,可以使用新的多变量输入数据来预测未来的风电功率。由于模型已经学习到了输入变量与风电功率之间的复杂关系,因此能够输出较为准确的预测结果。

五、研究展望

随着深度学习技术的不断发展和完善,基于VMD-CNN-LSTM的风电功率预测模型将具有更广阔的应用前景。未来的研究可以进一步探索模型的优化算法、超参数调整策略以及与其他先进技术的结合应用,以提高模型的预测精度和泛化能力。同时,随着大数据和云计算等技术的普及和应用,风电功率预测将更加注重实时性和准确性,为电力系统的稳定运行和风电并网的优化调度提供更加有力的支持。

📚2 运行结果

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值