基于TCN-GRU的自行车租赁数量预测研究(Matlab代码实现)

                   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、TCN-GRU模型介绍

1. 时间卷积网络(TCN)

2. 门控循环单元(GRU)

3. TCN-GRU结合

三、模型构建与训练

1. 数据收集与预处理

2. 模型构建

3. 模型训练

四、实验结果与讨论

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于TCN-GRU(时间卷积网络-门控循环单元)的自行车租赁数量预测研究是一种结合了时间卷积网络(Temporal Convolutional Network, TCN)和门控循环单元(Gated Recurrent Unit, GRU)的深度学习模型,旨在通过这两种网络的优势互补,提高自行车租赁数量预测的准确性和效率。以下是对该研究的详细探讨:

一、研究背景与意义

随着城市化进程的加快和环保意识的提升,自行车租赁服务已成为解决城市交通问题的重要手段之一。然而,自行车租赁数量的波动受多种因素影响,如天气、季节、工作日与节假日等,传统的预测方法难以有效应对这些复杂因素。因此,利用TCN-GRU模型进行自行车租赁数量预测,对于优化资源配置、提升用户体验具有重要意义。

二、TCN-GRU模型介绍

1. 时间卷积网络(TCN)

TCN是一种特殊的卷积神经网络,专门用于处理时间序列数据。它通过因果卷积和膨胀卷积(也称为空洞卷积)来实现对时间序列的长期依赖建模。TCN具有并行计算能力强、训练速度快、能够捕捉长距离依赖关系等优点。

2. 门控循环单元(GRU)

GRU是一种简化的循环神经网络(RNN)结构,它通过引入重置门和更新门来控制信息的流动,有效缓解了RNN在训练过程中容易出现的梯度消失或梯度爆炸问题。GRU具有计算效率高、易于训练、能够捕捉时间序列中的动态变化等优点。

3. TCN-GRU结合

TCN-GRU模型结合了TCN和GRU的优势,通过TCN捕捉时间序列中的长距离依赖关系,并利用GRU处理时间序列中的动态变化。这种结合使得TCN-GRU模型在预测自行车租赁数量时,能够更准确地捕捉影响租赁数量的各种因素及其之间的复杂关系。

三、模型构建与训练

1. 数据收集与预处理

收集自行车租赁公司的历史数据,包括每日租赁数量、天气情况(如温度、降水量等)、季节、节假日等信息。对数据进行预处理,包括缺失值处理、异常值处理、特征选择等,以保证数据的质量和可用性。

2. 模型构建

根据TCN-GRU模型的结构,构建相应的深度学习模型。模型通常由TCN层和GRU层堆叠而成,其中TCN层用于提取时间序列中的长距离依赖特征,GRU层则用于捕捉时间序列中的动态变化特征。最后,通过全连接层将提取的特征映射到预测目标上。

3. 模型训练

将预处理后的数据输入到TCN-GRU模型中,进行训练。在训练过程中,可以采用交叉熵损失函数作为优化目标,并使用梯度下降法或其变体(如Adam优化器)来更新模型参数。同时,为了防止过拟合,还可以采用正则化、dropout等策略来提高模型的泛化能力。

四、实验结果与讨论

实验结果表明,基于TCN-GRU的自行车租赁数量预测模型在训练集和测试集上的预测精度均较高。该模型能够有效地捕捉时间序列中的复杂特征和非线性关系,提高预测的准确性和鲁棒性。同时,由于TCN和GRU的结合,模型还具有较好的稳定性和抗噪声能力。

然而,TCN-GRU模型也存在一些挑战和改进空间。例如,模型参数较多,需要较长的训练时间;对于极端天气或特殊事件等异常情况的处理能力有待提高;此外,模型的预测性能还可能受到数据质量、特征选择等因素的影响。

五、结论与展望

基于TCN-GRU的自行车租赁数量预测模型是一种有效的深度学习模型,能够显著提高预测精度和稳定性。未来研究可以进一步优化模型结构和参数设置,提高模型的训练效率和预测性能;同时,还可以考虑引入更多的外部因素(如用户行为、地理位置等)作为特征输入,以提高模型的预测能力。此外,随着深度学习技术的不断发展,未来还可以探索其他更先进的深度学习模型在自行车租赁数量预测中的应用。

📚2 运行结果

 

部分代码:

function [mae,rmse,mape,error]=calc_error(x1,x2)

error=x2-x1;  %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])

 mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])

 mape=mean(abs(error)/x1);
 disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]李婷婷.城市公共自行车租赁点选址规划研究[D].北京交通大学,2010.DOI:10.7666/d.y1961114.

[2]陆朕.公共自行车租赁点车辆数的预测方法研究[D].南京师范大学,2015.DOI:10.7666/d.Y2857359.

[3]韩军红,魏越,侯礼兴.公共自行车租赁点规模优化[J].山西建筑, 2023, 49(22):57-61.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值