FTTR场景下空间复用与速率联合优化

本文介绍了FTTR技术在解决家庭网络连接稳定性问题上的作用,并探讨了集中式光无线网接入架构C-WAN,以及在FTTR架构下,通过C-SR与速率联合优化提升网络性能的原理和挑战。下一代Wi-Fi多AP协同技术如C-OFDMA、C-BF、C-SR和C-JT被提出,重点在于C-SR的空间复用与速率控制的联合优化,以提升家庭网络的整体吞吐量和用户体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

0 引言

1 FTTR技术及架构

1.1 FTTR基本架构

图1

1.2 C-WAN架构

图2

2 下一代Wi-Fi多AP协同技术

3 C-SR与速率联合优化

图3

3.1 信道模型

3.2 吞吐量模型

4 结束语


摘要

随着网络技术的飞速发展,用户对家庭场景内网络体验的要求日益增加。FTTR能够在一定程度上解决无线网络连接不稳定的问题。在FTTR架构基础上,介绍了集中式光无线网接入架构,探讨了下一代Wi-Fi协同空间复用技术与速率控制的主要原理,并对当前面临的挑战以及未来的研究方向进行了分析和展望。

关键词: FTTR; 集中式光无线网接入架构; 协同空间复用

0 引言

随着网络技术的飞速发展,视频直播、远程办公、扩展现实、全息互动等互联网应用不断涌现,在给人们带来丰富多彩的数字化生活的同时,也对家庭网络提出了更高的要求。目前,家庭内使用的终端大多是通过Wi-Fi接入互联网的手机、平板电脑、笔记本等移动设备,因此Wi-Fi的网络质量在很大程度上决定了用户体验[1]。由于发射功率的限制和障碍物对信号的衰减,单个Wi-Fi接入点(Access Point,AP)不足以覆盖大户型住房的所有房间。当终端距离AP较远或信号连续穿墙时,容易出现无线连接不稳定、用户体验较差的情况。为了解决这一问题,现已提出了多种AP组网方案,如网线组网、电力组网和无线组网等[2]。欧洲电信标准化协会第五代固定网络行业规范工作组提出了基于光纤的家庭网络解决方案——光纤到房间(Fiber To The Room,FTTR)[3]

FTTR是一种基于光纤通信的网络架构,通过将光纤延伸到用户房间内的无线接入点,提供高速、稳定的网络连接[4]。虽然FTTR组网为主、从设备提供了稳定的光纤链路,但在设备端的无线链路也会存在和传统组网方式类似的问题,即在每个房间内部署AP会导致网络环境更加密集,增加设备间的竞争和干扰。因此,需要通过光与Wi-Fi的协同机制来减少AP间的干扰,提升网络性能。本文介绍了一种新颖的集中式无线光接入网架构(Centralized Wireless-optical Access Network,C-WAN),并结合下一代Wi-FiAP协同技术对FTTR架构中协同空间复用技术以及速率控制算法进行了研究。

1 FTTR技术及架构

1.1 FTTR基本架构

FTTR技术方案通过光纤进行家庭组网,由主网关、光路由、光网络、网络管理平台4部分组成[5]。在关键位置部署FTTR主网关,以主网关为核心,上行连接光线路终端,下行通过光纤、分光器连接多个从光路由,光路由支持千兆Wi-Fi和以太网口。网络管理平台负责采集家庭网络信息并汇总整理上报,从而全面实现对家庭千兆网络的运维管理。FTTR基本架构如图1所示。

1


1   FTTR基本架构


 

1.2 C-WAN架构

FTTR基本架构中,光纤信号通过光模块转换为无线信号,AP进行信号发送,用户可以在房间内使用设备(如智能手机、平板电脑、笔记本电脑等)无线接入网络。但与此同时,在家庭内部署多个设备会导致网络场景密集,空口无序竞争严重,因此可采用C-WAN架构进行AP间协同控制,C-WAN架构的核心是由主设备进行信息搜集和决策,对光和Wi-Fi传输进行中心化控制,实现光链路和无线链路的资源协同配置[6]

通过C-WAN架构能够更好地应用FTTR协同控制技术,完成主、从设备在时间、频率、空间等维度的协同资源调度。C-WAN协同架构如图2所示,中心化控制器位于主设备内,实时搜集各从设备的网络状态信息,生成合理的调度策略。FTTR

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值