KeyBERT进行中文关键词提取

原文链接

KeyBERTLeveraging BERT to extract important keywordshttps://maartengr.github.io/KeyBERT/index.html

        一种基于BERT的极简关键词提取方法。
        关键词提取是通过查找文档中与文档本身最相似的词来完成的。首先,用BERT提取文档嵌入,得到文档级表示。然后,提取N-gram单词/短语的单词嵌入。最后,使用余弦相似性来查找与文档最相似的单词/短语。
        那么,最相似的词可以被识别为最能描述整个文档的词。

使用BERT进行中文关键词提取

1.安装keyBert

pip install keybert

2.安装中文分词器-jieba

pip install jieba

3.提取中文关键词

3.1 文本转化成词共现矩阵

from sklearn.feature_extraction.text import CountVectorizer
import jieba

def tokenize_zh(text):
    words = jieba.lcut(text)
    return words

vectorizer = CountVectorizer(tokenizer=tokenize_zh)

3.1 提取关键词

from keybert import KeyBERT

kw_model = KeyBERT()
doc = "我爱北京天安门"
keywords = kw_model.extract_keywords(doc, vectorizer=vectorizer)

3.2 输出关键词

[('天安门', 0.7936), ('北京', 0.64), ('我', 0.5716), ('爱', 0.4095)]
 

4 预训练模型下载问题

解决方案1:

从SentenceTransformer下载

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
解决方案2:

参考留言回复从huggingface下载如何从huggingface官网下载模型_薰珞婷紫小亭子的博客-CSDN博客_huggingface模型下载

kw_model = SentenceTransformer('./model_path/paraphrase-multilingual-MiniLM-L12-v2')

kw_model = KeyBERT(model=kw_model)

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eva_Hua

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值