wishchinYang的专栏

生死去留,蓬头傀儡;一时线断,落落磊磊!不创造知识,只是知识的搬运工!...

三维重建6:绑架问题/SensorFusion/IMU+CV-小尺度SLAM

机器人的“绑架”问题是指在缺少它之前的位置信息情况下,去确定机器人的当前位姿,例如当机器人被安置在一个已经构建好地图的环境中,但是并不知道它在地图中的相对位置,或者在移动过程中,由于传感器的暂时性功能故障或相机的快速移动,都导致机器人先前的位置信息的丢失,就像人质的眼睛被蒙上黑布条,拉上集装箱被运...

2017-06-20 14:10:28

阅读数:5331

评论数:0

三维重建:SLAM的粒度和工程化问题

三维重建根据时间和场景的粒度不同需要引入不同的工程化方法:1.像素级别重建,也称为稠密重建;2.特征点级别重建,也称为稀疏重建;3.环境重建,被称为目标级别重建。

2016-05-18 19:08:44

阅读数:4719

评论数:1

三维重建:GitHub百度Apollo 2.0

GitHub:https://github.com/ApolloAuto/apollo1. 关于Apollo的数据:Apollo的数据会如何开放?自动驾驶数据将包括具有高分辨率图像和像素级别标注的 RGB 视频,具有场景级语义分割的密集三维点云、基于双目立体视觉的视频和全景图像。数据集中提供的图像...

2018-06-06 18:20:29

阅读数:2480

评论数:1

三维卷积:全景图像Spherical CNNs(Code)

         卷积神经网络(CNN)可以很好的处理二维平面图像的问题。然而,对球面图像进行处理需求日益增加。例如,对无人机、机器人、自动驾驶汽车、分子回归问题、全球天气和气候模型的全方位视觉处理问题。         将球形信号的平面投影作为卷积神经网络的输入的这种Too Naive做法是注定...

2018-06-04 11:47:54

阅读数:2814

评论数:0

人工机器:基于视觉的机械手控制

        《机器人学、机器视觉与控制》一书中,第五部分开始,第15章之前——基于视觉的控制,第442页这样写到。          第二个问题:确保机器人能达到一个期望的位姿,也不是一个简单的事情。正如我们在第七章讨论的那样,机器人末端执行器要通过计算要求的关节角度才能向一个位姿运动。这就...

2018-05-10 10:57:03

阅读数:1014

评论数:0

DeepMind:所谓SACX学习范式

           机器人是否能应用于服务最终还是那两条腿值多少钱,而与人交互,能真正地做“服务”工作,还是看那两条胳膊怎么工作。大脑的智能化还是非常遥远的,还是先把感受器和效应器做好才是王道。           关于强化学习,根据Agent对策略的主动性不同划分为主动强化学习(学习策略:必须...

2018-03-26 11:01:30

阅读数:108

评论数:0

三维CNN:收集一些最近的3d卷积网络PointNet++

        PointNet++是在PointNet上做出了改进,考虑了点云局部特征提取,从而更好地进行点云分类和分割。 先简要说一下PointNet: PointNet,其本质就是一种网络结构,按一定的规则输入点云数据,经过一层层地计算,得出分类结果或者分割结果。...

2018-03-22 18:04:48

阅读数:3381

评论数:0

三维重建PCL:点云单侧面正射投影

        终于把点云单侧面投影正射投影的代码写完了,为一个阶段,主要使用平面插值方法,且只以XOY平面作为的正射投影面。有些凑合的地方,待改进。        方法思路:使用Mesh模型,对每一个表面进行表面重建。借助OpenCV Mat类型对投影平面进行内点判断,对内点位置进行插值。   ...

2018-03-22 15:02:03

阅读数:1954

评论数:4

点云插值:三维平面参数确定-不共线三点的平面方程

  参考链接:三维空间中的平面方程                 这个链接是错误的: http://blog.csdn.net/PengPengBlog/article/details/52774421      //获取平面方程//Ax + By + Cz + D std::vector&a...

2018-03-22 11:10:55

阅读数:326

评论数:0

三维重建13:点云的局部特征总结

三维场景中物体检测也可以使用特征点方法+词包方法的通用框架。其中BOW方法是无差别的,特征点方法与二维图像不同的是点云的数据格式问题,一般表示为对点云曲面进行特征提取。可以使用基于八叉树的方法进行特征点提取,也可以使用深度Map图的方法或有序点云方法进行特征点提取。            注意事项...

2017-08-19 23:20:38

阅读数:3033

评论数:0

三维重建7:Visual SLAM算法笔记

此文是一个好的视觉SLAM综述,对视觉SLAM总结比较全面,是SLAM那本书的很好的补充。介绍了基于滤波器的方法、基于前后端的方法、且介绍了几个SensorFusion方法,总结比较全面。

2017-06-20 19:53:57

阅读数:4369

评论数:0

ROS:使用ubuntuKylin17.04安装ROS赤xi龟

使用ubuntuKylin17.04可以成功的安装ROS赤xi龟。

2017-05-16 10:58:38

阅读数:2536

评论数:0

三维重建:SLAM相关的一些术语解释

还是不要看了,高翔的科普读物已经出版了,读他的《slam十四讲》就可以了。 SLAM是一个工程问题,再次复习一下工程中可能用到的名词解释。

2017-03-24 12:56:35

阅读数:1270

评论数:0

Morse理论:拓扑不变性特征匹配原理

微分拓扑的一个重要分支。通常是指两部分内容:一部分是微分流形上可微函数的莫尔斯理论,即临界点理论;另一部分是变分问题的莫尔斯理论,即大范围变分法。

2016-12-21 13:26:11

阅读数:886

评论数:0

PCL: 根据几何规则的曲面剖分-贪婪法表面重建三角网格

        点云场景中进行物体识别,使用全局特征的方法严重依赖于点云分割,难以适应杂乱场景。使用局部特征,即对点云进行提取类似于3D SURF、ROPS之类的局部特征,需要寻找离散点云块的局部显著性。       点云的基本局部显著性有某一点处的曲率。一、几何尺寸        可表述为显著性...

2016-06-30 11:02:02

阅读数:1913

评论数:0

ROS:Nvidia Jetson TK1平台安装使用ROS

原文连接:        http://wiki.ros.org/indigo/Installation/UbuntuARM Ubuntu ARM install of ROS Indigo There are currently builds of ROS for Ubun...

2016-06-23 17:53:04

阅读数:2816

评论数:0

ROS:Nvidia Jetson TK1开发平台

原文链接:         http://wiki.ros.org/NvidiaJetsonTK1 1. Nvidia Jetson TK1 Jetson TK1 comes pre-installed with Linux4Tegra OS (basically Ubuntu ...

2016-06-23 17:51:06

阅读数:1400

评论数:0

SLAM:(编译ORB)fatal error LNK1181: 无法打开输入文件“libboost_mpi-vc110-mt-1_57.lib”

对于使用MD版本编译的ORB_SLAM,会用到MPI版本的Boost,需要自己编译,比较麻烦。          因此使用MT版本进行生成,暂时无法完成。 工程配置         发现添加库文件使用了:从父级或项目默认继承,默认包含了libboost_mpi-vc110-mt-1_57.l...

2016-05-26 16:37:56

阅读数:1554

评论数:0

三维重建:SLAM算法的考题总结

算法上一般分为 相机定位跟踪 和 场景地图构建 两个高度相关的部分。场景地图构建是指 构建相机所在场景的三维地图;相机定位跟踪是指 利用相机自身姿态的估计值和通过传感器得到的观测值来确定相机在环境中的位置。

2016-05-16 17:26:35

阅读数:5092

评论数:3

ROS: Ubuntu16.04安装ROS-kinetic

参考连接:SLAM: Ubuntu14.04_Kylin安装ROS-Indigo 第一步: 软件源配置 1、 增加下载源(增加ubuntu版的ros数据仓库,即下载源)(通用指令适合任何版本的ros)

2016-02-04 18:05:53

阅读数:3650

评论数:2

提示
确定要删除当前文章?
取消 删除
关闭
关闭