说在开头:关于量子理论
我们再来回顾下量子理论对双缝干涉的解释:当电子通过狭缝,假如我们采用任其自然的观测方式,让它不受干扰地在空间中传播,这时候电子的波动性就占据了上风,它于是以某种方式同时穿过了两道狭缝,自身与自身发生了干涉,其波函数Ψ按照严格的干涉图形发展;但是当它撞上感应屏的一刹那,观测方式发生了变化,电子突然和某种实物产生了交互作用——我们现在试图探测电子的实际位置了;于是突然间,粒子性接管了这一切,这个电子凝聚成一个点,按照Ψ的概率随机地出现在屏幕的某个地方。
量子派物理学家现在终于领悟到了事情的真相:我们的结论和我们的观测行为本身大有关系!而且谈论任何物理量都是没有意义的,除非首先描述你测量这个物理量的方式:一个电子的动量是什么?我不知道,一个电子没有什么绝对的动量,不过假如你告诉我打算怎么去测量,我倒可以告诉你测量结果会是什么。根据测量方式的不同,这个动量值可以从十分精确一直到万分模糊,这些结果都是可能的,也都是正确的。而一个电子的动量,只有当你测量时,才有意义。这似乎变成了一种玄奥的哲学讨论,因为这牵涉到我们世界观的根本变革,以及我们对宇宙的认识方法。假如你现在对量子论感到困惑仿徨,那么送你一句玻尔的名言:“如果谁不为量子论而感到困惑,那他就是没有理解量子论”。而且爱因斯坦大神对此的仿徨,比你我都要多很多。
如果不定义个测量动量的方式,那么我们讨论电子的动量就是没有意义的。这听上去似乎是一种唯心主义的说法。难道我们不去测量电子,那么它就没有动量了么?玻尔和海森堡对此点点头。我们时刻要注意的是:在量子论中观测者是和外部宇宙结合在一起的,它们之间现在已经没有明确的分界线了,是一个整体。如今我们自己也已经融入了这个世界,对于这个物我合一的世界来说,任何东西都应该可以测量和感知,而且可观测的量才是存在的。
量子论告诉我们:不存在一个客观的、绝对的世界,而唯一存在的就是我们能够观测到的世界。物理学的全部意义,不在于它能够揭示出自然“是什么”,而在于它能够明确关于自然我们能“说什么”。没有一个脱离于观测而存在的“绝对自然”,只有我们和那些复杂的测量关系,这构成了这个宇宙的全部。测量是新物理学的核心,测量行为创造了整个世界。
那么怎样的行为可以算是测量或观测?如果意识是观测前提,那么意识是什么?又如何界定?量子论似乎让物理学走了一个轮回,又回到了200年前的贝克莱所说:存在即被感知!(参考自:曹天元-上帝掷骰子吗)
二,新型电源拓扑
我们前面说到过,其它有效电源拓扑都是基于三种基本电源拓扑的演化和组合。上一章我们知道同步降压拓扑和同步升压拓扑是相互镜像的关系,那么如果将同步降压拓扑和升压拓扑背靠背放在一起会发生什么呢?按照简单逻辑思考,这个拓扑原理上可以实现任意的升压、降压和等压。这就是本章要介绍的复合拓扑:Cuk,Sepic和Zeta拓扑。
1,四管升降压拓扑
如下图所示,最上方是以降压拓扑作为输入,后以升压拓扑作为输出,完全是两个独立的开关电源简单组合:各自独立的电感器和输出/输入电容器。所以当如下中间图将两个拓扑组合在一起,产生了第一个复合拓扑——四管升降压拓扑:由降压和升压两个单元,每个单元有两个MOS管形成互补驱动,降压单元的输出(Vx)是升压单元的输入;所以同步四管升降压拓扑的直流传递函数可以看成两个单元的级联:Vo/Vin = (Vx/Vin)*(Vo/Vx) = Dbuck* [1/(1-Dboost)] = Dbuck/(1-Dboost);同样对于非同步四管升降压拓扑,器直流传递函数Vo/Vin = D/(1-D)。
我们看到复合拓扑与升降压拓扑(BUCK-BOOST)相比,其最大的优势在于输出电源相对于输入电源的极性相同。根据对两个单元开关的不同控制模式,可以分为两种版本:单占空比版本和双占空比版本。
1. 单占空比版本:如下图所示,该四管升降压拓扑只有一个占空比D,其直流传递函数为D/(1-D),这种驱动控制方法简单,升压/降压无缝转换;但是其导通损耗较高,例如Vo=Vin时整体效率约为60%~70%,而且输入和输出电容器的有效值电流也很大;
——BUCK拓扑的输入纹波电流大(斩波)而BOOST拓扑的输出纹波电流大(斩波),所以单占空比版本复合拓扑的输入和输出纹波电流都很大(具体分析参考:《基本开关电源拓扑》)。
2. 双占空比:如下图所示,BUCK拓扑和BOOST拓扑两个单元的占空比可以不同:Dbuck用于BUCK拓扑而Dboost用于BOOST拓扑;
1, 其优点是开关损耗较低:如果电路只需要降压,那么无需驱动BOOST拓扑单元,只需长期打开BOOST拓扑单元上管(采用PMOS)即可;同样如果只需升压,那么只需长期打开BUCK拓扑单元的上管(采用PMOS),这样就能降低大部分的开关损耗;
——上管如果采用NMOS,则需自举电路提供高电压打开上管NMOS管,但是如果PWM占空比是100%,那么自举电路将失效(关于自举电路部分,后面章节分析)。
2, 当Vo≈Vin时,需要同时驱动BUCK和BOOST拓扑单元,此时开关损耗就会很高,而且对于同一输出电源电压,BUCK和BOOST拓扑单元有无数种占空比组合。如下右图所示,为占空比固定差值法,保证电源效率最高;
3, 其主要缺点是:MOS管控制比较复杂,MOS管的导通损耗较高,输入或输出电容有效值电流较大,而且升压/降压并非无缝切换(模式转换会出现占空比极限:0%和100%)。
2,复合拓扑
四管升降压拓扑有一个明显的缺点是:将BUCK拓扑的输入纹波电流大和BOOST拓扑的输出纹波电流大的缺点合在了一起,导致其输入和输出纹波电流都很大。那么,是否可以将BUCK拓扑+BOOST拓扑的顺序改一改,变成BOOST拓扑+BUCK拓扑组合呢?这样的话,这个复合拓扑的输入纹波电流和输出纹波电流都会很小(与电感器串联);但是带来了一个明显的问题:降压单元的电感器和升压单元的电感器不再是背靠背结构,因此无法像四管升降压拓扑那样将它们合成一个电感器。
我们已经知道了BUCK拓扑,但对于BOOST和BUCK-BOOST拓扑并未全部了解。BOOST拓扑的输入与输出极性相同,即:输入为正电压输出也为正电压,若输入为负电压那么输出也为负;而BUCK-BOOST刚好相反。如下图所示为BOOST和BUCK-BOOST拓扑的对应关系。我们可以看到BOOST拓扑与BUCK-BOOST拓扑只是选择的参考GND不同。
所以,我们可以随意将升压拓扑(正对正或则负对负)和降压拓扑级联,在电路中间有一个直流环节横跨两个拓扑,能量由此从一个拓扑传输到另一个拓扑。如下图所示,BUCK和BOOST拓扑使用了两个开关,如何将两个开关合成一个开关?还有一个最重要的问题是:怎么在两个单元之间能量传输呢?接下来根据BOOST和BUCK的不同组合,产生Cuk,Sepic和Zeta拓扑,它们仅将耦合电容一端连接到交换节点,三个拓扑都包含:两个电感器,一个开关管和一个耦合电容器。
3,Cuk拓扑
如下图所示,我们首先以Cuk拓扑(正对负)为例,进行详细的分析。其主要特点是:
1. Cuk电源输入和输出的脉冲电流都是连续的,只要L1和L2足够大,电流纹波会非常小,如果将L1和L2绕在同一铁芯上,纹波幅值可能减为0;
2. Cuk电源输入和输出的极性相反,所以其和BUCK-BOOST拓扑实现了类似的功能。
工作过程如下:
1. 当Q1导通时:
1, BOOST单元:V1急剧下降至0V,由于电容C1两端电压不能突变,所以V2也等幅值急剧下降至-Vp,D1反偏截止; L1上的电压为Vdc,电流线性上升,电流上升率:dI/dt = Vdc/L1,储能增加;
2, BUCK单元:此时L2左侧电压为-Vp,右侧电压为-Vo, L2上电压为-Vp-(-Vo)=-Vp+Vo,L2电流线性上升,上升率为:dI/dt = (Vo-Vp)/L2,储能增加;
3, Q1导通时 C1放电:电流从左端发出,通过Q1和R0,再通过L2回到C1的右端,将储存在C1上的静电场能传递给R0,同时将输出滤波电容Co反向充电至-Vo。
2. 当Q1关断时:
1, BOOST单元:V1上升至Vp,V2随之上升D1导通并钳位在0V; L1上的电压为:Vp-Vdc,电流线性下降,电流下降率:dI/dt = (Vdc-Vp)/L1,储能减小;
2, BUCK单元:此时L2左端为0V,右端为-Vo,L2上电压为:0-(-Vo)=Vo,电流线性下降,L2电流下降率: dI/dt = Vo/L2,L2上电流流经D1和R0后回到L2右端;
3, Q1关断时 Vdc对C1充电:电流从Vdc出发,通过L1和C1左侧,再通过二极管D1到GND;而输出给负载R0的能量主要由L2和C0提供。
——C1左端被充电至Vp,右端被D1钳位至0V,此时C1的储能为C1Vp2/2。
3. 从Q1导通和关断过程来看,Q1关断时BOOST单元通过Vdc对C1充电,而Q1导通时C1将电能传输给BUCK单元;C1起到了能量传输的关键作用。
4,Cuk、Sepic和Zeta拓扑结构特点
如下图“正对正升压,降压拓扑”所示,我们可以看到升压单元是完整的BOOST拓扑而降压单元是完整的BUCK拓扑。
1. 首先,假设升压单元和降压单元的开关管占空比一样,升压单元的整流二极管决定了降压单元的MOS管只能与其同时工作,那么降压单元的MOS管可以去掉;
2. 其次,在升压单元和降压单元之间采用电容器耦合,类似于变压器对电容器两端电压(升压单元输出和降压单元输入)隔离,但其输入、输出电源的回流是相同的(变压器的回流路径已相互隔离);
3. 升压单元的开关信号通过耦合电容器直接输入到降压单元电感器输入端,由此可以得到不同组合的三个拓扑:Cuk,Sepic和Zeta;
4. 由于Cuk 的输入输出极性是反向的,所以改进得到Sepic拓扑,Sepic拓扑的输入和输出极性相同;但同样存在问题:输出电源与二极管串接(说明输出纹波电流是斩波),纹波电流比较大;再对Sepic拓扑改进得到Zeta拓扑,输出电源与电感器串接,但是输入电源串接的是开关管(输入纹波电流是斩波,纹波电流大)。
——Cuk,Sepic以及Zeta拓扑,从其结构来说有其优缺点,但对于Cuk拓扑来说,仅仅是因为减小输入、输出纹波电流,而相对BUCK-BOOST拓扑来说增加了电感器、耦合电容器,从而大大增加了成本和空间,对一般应用来说就显得得不偿失啦。
如下图所示,将CUK,SEPIC和ZETA拓扑稍微调整至更加便于理解的状态,我们就能明显看到CUK,SEPIC和ZETA拓扑的不同点。在这三个拓扑设计中构造如下规则:
1. Q仅在导通阶段导通;
2. D仅在关断阶段导通;
3. 电感电流必须与二极管D正向导通方向一致;
4. 导通和关断阶段,耦合电容Cc内的导通电流与关断电流必须相反。
——耦合电容Cc在拓扑的能量传输过程中,起到关键的作用,只有电容器Cc充放电才能将能量传输出去。
通过对三个拓扑在导通和关断阶段的分析,以及伏秒积定律,可得到如下结论:
1. 三种复合拓扑的占空比:D = Vo/(Vo+Vin),直流传递函数:Vo/Vin = D/(1-D);
2. 开关管(MOS管)的最大工作电压:Vo+Vin;
3. Cc电容器最大工作电压:Cuk:Vo+Vin,Sepic:Vin,Zeta:Vo。
如上图所示,三种电源拓扑的电流波形:
1. Cuk拓扑:
1, Cuk拓扑一直处于连续工作模式,所以L2的电流IL2的平均电流必然等于Io(输出平均电流),即:IL2=Io;
2, Q导通阶段电流流过电容器Cc,关断阶段IL1电流反向流过电容器Cc,在稳态工作下导通阶段的电荷变化必然等于关断阶段的电荷变化量(电容充电=放电),即:IL1*(1-D) = Io*D,可得IL1 = D/(1-D)*Io;
3, 在Q导通阶段,经过开关管Q的电流是IL1和IL2之和,即IQ = IL1+IL2 =Io/(1-D);
4, 在二极管导通阶段(Q关断),二极管的电流也是IL1和IL2之和,ID = Io/(1-D);
2. Sepic拓扑:
1, 输出电流仅在Q关断阶段流经二极管D,此时二极管电流有两个来源:L1和L2,它们的电流和是Io,即,(IL2+IL1)*(1-D) = Io;
2, 对于耦合电容器来说,关断阶段IL1从一个方向流入,导通阶段IL2从相反反向流入,在稳态工作时电容器充放电平衡,可得IL1*(1-D) = IL2*D;计算可得IL1 = D/(1-D)*Io,IL2 = Io;
3, 在Q导通阶段,开关管Q的电流是IL1和IL2之和,即IQ = IL1+IL2 = Io/(1-D);
4, 在二极管导通阶段(Q关断),二极管D的电流也是IL1和IL2之和,即ID = Io/(1-D);
5, Sepic拓扑输出电源与二极管D串联,二极管D的电流即是输出电源电流。
3. Zeta拓扑:
1, 对于耦合电容器Cc:在Q关断阶段有唯一的电流IL1流过L1,即电容器Cc的放电电流,在Q导通阶段有位移的电流IL2流过L2,即电容器Cc的充电电流;根据耦合电容充放电平衡,IL1*(1-D) = IL2*D;
2, 输出电源与L2串联,即Io=IL2;代入上式可得IL1 =Io*D/(1-D);
3, 在Q导通阶段,Q的电流是IL1和IL2之和,即IQ = IL1+IL2 = Io/(1-D);
4, 在二极管导通阶段(Q关断),二极管D的电流也是IL1和IL2之和,即ID = Io/(1-D);
5, Sepic拓扑输入电源与开关管Q串联,开关管的电流即是输出电源电流。
5,基本拓扑结构的改变
我们上面分析了Cuk,Sepic和Zeta拓扑都是升降压拓扑派生的复合拓扑,是否可以通过对基本拓扑(BUCK,BOOST,BUCK-BOOST)的改装,能使升压芯片适用于升降压、Cuk、Sepic和Zeta应用呢?如下图列举了采用两种电源芯片,实现不同功能的拓扑应用。但这些只是作为给胖友们开开脑洞玩玩的,并非实际所有电源控制芯片可用(拓扑结构变化时,会导致电流和电压应力/额定值需要重新评估,而且环路稳定性也会不同)。
写在最后
本章我们引出了同步开关电源拓扑,对于现在的认知来说这并非是新型电源拓扑,而是目前开关电源拓扑的主流。但对于传统电源拓扑结构来说,它在提升效率的同时引入了更多设计中需要考虑的问题。至于新型的复合拓扑,我们理解了它们的工作原理以及优缺点。至此,我相信大家对电源拓扑一定有了较深的认知。对于拓扑来说,考虑的就是那几个:电源效率,占用面积,输入、输出纹波。
接下来我们要进入开关电源的设计环节,即,如何从头去设计一个满足我们需求的开关电源。
本章部分相关内容和图片参考自:Sanjaya Maniktala -《精通开关电源设计》;普利斯曼-《开关电源设计》。下一章《基本开关电源电感器设计》。