Alpha多样性

Alpha多样性指数

Alpha多样性用于分析样品内(Within-community)的微生物群落多样性,可以反映样品内的微生物群落的丰富度和多样性。

alpha多样性指数包括丰富度多样性均一性等。

丰富度指数只是简单的估算群落中物种的数量,而不考虑群落中每个物种的丰度情况,例如Chao1、ACE等。

多样性指数同时考虑的物种在群落中是否存在即其所占的丰度,例如Shannon、Simpson等。

均一性指数用于评估群落中各个微生物在群落中的均匀程度,所有微生物均具有相同的丰度则均一性最高,例如Pielou等。

当研究的样本只有两组时,一般使用t-test检验组间差异。

大多数情况下,我们分析的样本可能并不是两组而是多组,此时需要使用ANVOA来检验样本间多样性指数的差异,但是ANOVA只是用于评估所有样本整体是否具有差异,各组样本间的两两比较还需要进一步使用Turkey HSD test来进行检验。

当样本组数目较多时,如果使用两两之间连线+显著性标注的方法来展示样本简单的差异会比较乱,因而通常是使用相同的字母来代表组间没有差异的样本,而常规的Turkey test检验结果只会给出p-value而并不会标出各组之间的分类结果

### Alpha多样性分析简介 Alpha多样性指的是单一生态系统内生物种类的丰富度和均匀度。在微生物组研究中,通常通过计算不同类型的指数来衡量样本内的多样性。 ### Python实现Alpha多样性分析 对于Python环境下的alpha多样性分析,可以利用`pandas`处理数据并借助`skbio`(Scikit Bio)库中的函数完成多样性的计算[^1]: ```python import pandas as pd from skbio.diversity.alpha import shannon, simpson, berger_parker_d # 假设已经有一个DataFrame df存储着OTU表(每列代表一种分类单元,每行对应一个样本) def calculate_alpha_diversity(df): # 计算Shannon指数 shannon_index = df.apply(lambda x: shannon(x), axis=1) # 计算Simpson指数 simpson_index = df.apply(lambda x: simpson(x), axis=1) # 计算Berger-Parker优势种比例 bp_index = df.apply(lambda x: berger_parker_d(x), axis=1) alpha_diversities = pd.DataFrame({ 'shannon': shannon_index, 'simpson': simpson_index, 'berger_parker_d': bp_index }) return alpha_diversities ``` 此代码片段展示了如何基于给定的数据框df执行三种常见的alpha多样性指标——香农熵(shannon),辛普森指数(simpson),以及伯杰-帕克指数(berger_parker_d)。 ### 使用R语言进行Alpha多样性分析 而在R环境中,则可以通过`vegan`包来进行类似的运算[^3]: ```r library(vegan) # 加载物种相对丰度矩阵 matrix <- read.csv("./data/matrix_species_relab.tsv", header = TRUE, sep = "\t") # 将第一列表示样本ID移除作为样品名向量 sample_names <- rownames(matrix) otu_table <- matrix[, -1] # 执行alpha多样性测量 diversity_measures <- data.frame( Shannon = diversity(t(otu_table)), Simpson = diversity(t(otu_table), "invs"), BergerParker = specnumber(t(otu_table)) / sum(t(otu_table)) ) rownames(diversity_measures) <- sample_names print(diversity_measures) ``` 这段R脚本同样实现了对输入表格形式的OTU计数数据应用三个标准的alpha多样性测度方法:香农熵、倒置辛普森指数(inverted Simpson's Index)及伯杰-帕克密度(Berger Parker dominance)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值