1.4 矩阵方程(第1章 线性代数中的线性方程组)

内容概述

本节引入了矩阵方程的概念,并指出了矩阵方程、向量方程、线性方程组之间的等价关系,这种等价关系可以指导我们在解决现实问题时根据不同的情况灵活运用。接着,讲了矩阵方程 A x = b A\boldsymbol x =\boldsymbol b Ax=b的一些基本性质,例如解的存在性, A x A\boldsymbol x Ax如何计算,以及 A x A\boldsymbol x Ax这一矩阵-向量积的运算法则。

矩阵方程及其与向量方程、线性方程组的关系

线性代数中的一个基本思想是把向量的线性组合看作矩阵与向量的积。
定义:

A A A m × n m \times n m×n矩阵,它的各列为 a 1 , ⋯   , a n \boldsymbol a_1, \boldsymbol \cdots, \boldsymbol a_n a1,,an。若 x \boldsymbol x x R n \mathbb R^n Rn中的向量,则 A A A x \boldsymbol x x的积(记为 A x A\boldsymbol x Ax)就是 A A A的各列以 x \boldsymbol x x中对应元素为权的线性组合,即:
A x = [ a 1 a 2 ⋯ a n ] [ x 1 x 2 ⋯ x n ] = x 1 a 1 + x 2 a 2 + ⋯ + x n a n A\boldsymbol x=[\boldsymbol a_1\quad \boldsymbol a_2 \quad\cdots \quad\boldsymbol a_n] \begin{bmatrix}x_1 \\ x_2 \\ \cdots \\ x_n\end{bmatrix}=x_1\boldsymbol a_1 + x_2\boldsymbol a_2 + \cdots + x_n\boldsymbol a_n Ax=[a1a2an]x1x2xn=x1a1+x2a2++xnan
注意 A x A\boldsymbol x Ax仅当 A A A的列数等于 x x x中的元素个数时才有定义。
例:
R m \mathbb R^m Rm中的 v 1 \boldsymbol v_1 v1, v 2 \boldsymbol v_2 v2, v 3 \boldsymbol v_3 v3,把线性组合 3 v 1 − 5 v 2 + 7 v 3 3\boldsymbol v_1 - 5\boldsymbol v_2 + 7\boldsymbol v_3 3v15v2+7v3表示为矩阵乘向量的形式。
解:
根据上述定义,可以把 v 1 \boldsymbol v1 v1, v 2 \boldsymbol v2 v2, v 3 \boldsymbol v3 v3排列成矩阵 A A A,把数 3 3 3 − 5 -5 5 7 7 7排列成向量 x \boldsymbol x x,即:
3 v 1 − 5 v 2 + 7 v 3 = [ v 1 v 2 v 3 ] [ 3 − 5 7 ] 3\boldsymbol v_1 - 5\boldsymbol v_2 + 7\boldsymbol v_3 = [\boldsymbol v_1\quad \boldsymbol v_2\quad \boldsymbol v_3]\begin{bmatrix}3 \\ -5 \\ 7\end{bmatrix} 3v15v2+7v3=[v1v2v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值