https://doi.org/10.1093/ismejo/wrae049
摘要
自然生态系统中存在大量多样的微生物,对植物生长和健康至关重要。设计简化的微生物合成社区(SynComs)有助于减少复杂性,揭示微生物组功能的分子和化学基础及其相互作用。文中提出了一种基于集成高通量实验分析和计算基因组学分析的策略,用于定制设计功能性SynComs。
设计合成微生物的策略
在过去的十年里,SynCom设计采用了多种策略。其中包括基于分类的设计,依赖于探索自然样本中的微生物组成,以及建立代表性或核心微生物组。此外,通过比较不同表型样本中的微生物丰度差异,可以设计与特定表型相关的SynComs,从而有助于确定对植物健康有益的微生物。这些比较可以用于指导自下而上的策略,包括从具有相关功能属性的相对较少数量的单个微生物菌株或物种中组装社区,并可能为重建该表型提供良好的起点。例如,Zhuang等人评估了不同生长阶段、土壤类型和农业实践下的根际微生物组成,以识别与生长/产量参数相关的类群,并使用差异丰度分析选择菌株构建确实增强宿主生长表型的合成社区。在类似的研究中分析微生物组介导的细菌性枯萎抑制,Kwak等人甚至能够通过差异丰度分析识别一种单一的黄杆菌属细菌菌株,能够在很大程度上重建保护表型。
优化合成微生物的功能性
合成微生物社区的功能性可以通过考虑微生物在体外或体内表现出的相互作用、具有的特定功能特性以及生态位偏好来优化。这种方法通过减少自然微生物社区的复杂性来研究特定表型的机制,并结合使用分类和功能数据来引导SynCom的设计。通过分析转录和翻译信息来预测竞争和底物偏好,允许通过添加相应的益生元或益生菌来有针对性地操纵自然群体中特定微生物成员的活动。基于功能的方法也可以与与宿主表型相关的分类数据结合使用:例如,Carrion等人识别了在糖用甜菜病害抑制和促进土壤中的根际微生物区系中一致差异丰度的分类,通过表达特定的生物合成基因簇和几丁质酶编码基因的分析,他们识别了能够在很大程度上重建病害抑制表型的小型SynComs。设计SynComs不再仅仅基于分类,越来越多地涉及选择微生物组成员,这些成员(i)在体外或体内显示出积极或消极的相互作用,(ii)具有特定的功能性状,和/或(iii)具有互补/相似的生态位偏好。然而,整合微生物相互作用、功能性状和生态位偏好等标准引入了复杂性,需要全面的实验验证和复杂的分析。
优先选择生物活性微生物或功能基因进行SynCom设计
SynCom的设计也可以基于功能基因来进行优化,考虑的特征包括碳水化合物活性酶、分泌系统和抗真菌代谢物等。通过整合宏基因组学、代谢组学和表型数据,可以更有效地识别和选择具有所需功能的微生物群体,从而提高SynCom的定制化和功能性。如何在复杂生态系统中优先选择功能和微生物成员对于群落重组至关重要。解释由高通量测序技术生成的大量数据可能具有挑战性。例如,基于共生模式构建的微生物网络是否代表给定生态系统中实际功能多样性的程度往往不清楚。微生物组数据集通常只有相对(而非绝对)丰度数据,定义核心和附属分类的角色很困难。2018年开发的一个计算框架采用功能数据进行SynCom设计,通过上游整合宏基因组学、代谢组学和表型数据集,实现更可靠的潜在机制关联识别。相对于以前的方法,该工作流实现了降维、过滤假相关以及通过标准化数据、聚类共表达基因和代谢物以及整合先验(微)生物学知识的数据整合。另一种计算引导的SynCom设计方法是通过统计学习可视化社区功能景观,识别微生物与功能特征之间的潜在关联,以更好地理解自然或设计微生物群落的动态和/或生态背景。基于这些功能景观概念的建模迭代提供了设计复杂的“高功能”群落的可能性,通过精心选择的特征进行有向进化。
基于特征的合成微生物社区(SynCom)设计的计算方法
最近开发了一些创新的计算方法,用于解决基于大量(宏)基因组数据定制SynCom设计的挑战,包括优先确定最相关的微生物相互作用、识别关键的(生态)功能特征,以及在硅中优化功能社区组成。一些基于基因组的工具包括antiSMASH,它预测微生物次级代谢产物的生物合成能力;MacSyFinder用于检测大分子系统;PHI-base用于病原性识别。对于次级代谢产物生物合成基因簇,预测其生态功能是考虑将其纳入SynCom设计的关键。例如,编码已知功能产品的参考生物合成基因簇,如MIBiG数据库中所存储的,可以用于识别病原相关功能特征。
基因组规模的代谢网络模型(GSMM/GEMs)在微生物组研究中得到了显著的应用,并在预测微生物群落内的功能相互作用方面具有特别的优势。此外,随着GSMM的发展,图论方法在预测生物相互作用和理解营养物质及环境影响方面提供了有价值的见解。这些方法被用于识别具有所需代谢潜力的最小物种集合,和/或阐明生物体间的代谢交换。一个激动人心的研究利用GSMMs估计了成千上万个栖息地中的竞争和合作潜力。结果表明,竞争性社区抵抗物种入侵但难以适应营养变化,而合作社区则表现出相反的模式。已创建了多种工具,用于自动化微生物种及其群落的代谢网络重建。
用于SynCom设计的人工智能
机器学习(ML)和人工智能(AI)越来越多地用于(迭代)实验优化SynCom,因为它们可以帮助导航高维组合空间中的分类和功能。例如,BacterAI是一个新型的自动化科学平台,允许设计并使用实验平台生成作为“奖励”数据集的生长数据,进一步优化模型以改进实验设计。微生物代谢活动的预测可以通过在迭代设计中进行主动学习而高效生成,而无需先验知识。然而,使用这些方法定制SynCom面临的挑战包括可用数据集大小有限和缺乏评估SynCom质量的标准。此外,应谨慎使用AI和/或ML方法,因为如果没有验证,它们可能会产生错误或无效的关联。最近的一项研究使用微生物丰度模式极其准确地预测了肿瘤类型和存在,但进一步分析显示这些相关性是虚假的,从而说明了无意中在污染、批次效应或假阳性分类上训练的风险。
合成微生物群落的重构影响因素
构建特定(代谢)功能的微生物群落,这在微生物群落移植策略的背景下具有巨大的未来潜力。然而,预测的群落是否能成功定植真实宿主仍然是一个未知数,直到在湿实验室、温室和田间/宿主实验中进行验证。从选择和组合SynCom成员到其重构的转换过程中,面临许多额外的挑战,包括需要协调微生物之间的不同生长速率、确定接种顺序(即优先效应)、每个候选菌株的细胞密度量,以及评估可能导致某些SynCom成员在过程中丢失的潜在相互作用。此外,初始浓度的变化对于生长速率不同的菌株可能会对最终组装的群体结构和稳定性产生重大影响。所有这些变化都可能导致在使用SynComs调查相互作用或因果推论时功能上的增加随机性。这强调了通过在重构过程的不同阶段使用低通量宏基因组测序、实时定量PCR数据或荧光标记来监测群落组成和结构稳定性的必要性。另外,代谢建模可能能够预测生态位互补性和群落稳定性,特别是如果能够通过上述实验数据进行微调。
生物信息学和高通量验证协同推动SynCom设计
随着高通量表型平台的发展以及云实验室的兴起,显著减轻了表型化的限制。在最近的研究中,研究人员将136个随机组装的SynComs恢复到植物系统中。从这些试验中得到的实验数据被用作机器学习的数据集,成功地识别了预测表型结果的微生物菌株。尽管传统的SynCom设计方法可能仍对特定功能有效或作为简化的模型系统,这些新的概念框架需要处理和从大数据中提取有意义的见解。我们建议计算数据处理应包括整合来自大规模功能测试和硅预测的功能性状,这些功能可以针对实验数据进行校准和重新校准。这将导致为每个候选微生物创建一个标准化的特征矩阵。结合不同的SynCom设计参数,如社区的大小、所需的分类多样性等,通过计算SynCom级别的功能特征和/或使用基于模型的策略预测SynCom功能,可以评估生成的SynComs。从这些中,可以构建多个具有不同分类起源的具有相似功能特征组合的备选SynComs,这允许我们并行探索多种可能的解决方案。利用高通量表型系统将在接种这些多样化SynComs后产生的可操作样本信息,包括植物生物量(通过3D扫描)、抗压效果、生长形态、植物根系分泌物(包括挥发性有机化合物VOCs)的变化以及基因表达差异(通过元转录组学)。随后,这些组合及其表型数据可以重新作为AI工具的输入数据,用于学习和模型化SynCom功能,预测群体级表型,并帮助选择新的SynCom设计以迭代改进性能。未来可能建立针对SynCom相关数据集的数据库,并基于与不同宿主和表型相关的庞大SynCom数据集探索基因型-表型模式,从实验室间的相关性。
根际互作生物学研究室 简介根际互作生物学研究室是沈其荣院士土壤微生物与有机肥团队下的一个关注于根际互作的研究小组。本小组由袁军教授带领,主要关注:1.植物和微生物互作在抗病过程中的作用;2 环境微生物大数据整合研究;3 环境代谢组及其与微生物过程研究体系开发和应用。团队在过去三年中在 Nature Communications,ISME J,Microbiome,SCLS,New Phytologist,iMeta,Fundamental Research, PCE,SBB,JAFC(封面),Horticulture Research,SEL(封面),BMC plant biology等期刊上发表了多篇文章。欢迎关注 微生信生物 公众号对本研究小组进行了解。
撰写:谢鹏昊
修改:文涛
排版:杨雯儀
审核:袁军
宏基因组推荐
本公众号现全面开放投稿,希望文章作者讲出自己的科研故事,分享论文的精华与亮点。投稿请联系小编(微信号:yongxinliu 或 meta-genomics)
猜你喜欢
iMeta高引文章 fastp 复杂热图 ggtree 绘图imageGP 网络iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测
10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature
一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索 Endnote
16S功能预测 PICRUSt FAPROTAX Bugbase Tax4Fun
生物科普: 肠道细菌 人体上的生命 生命大跃进 细胞暗战 人体奥秘
写在后面
为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。
点击阅读原文