本文为学术交流用途,引用内容已标注来源。
今天我们来学习香港中文大学于君教授团队于2025年4月发表在 Cell Host & Microbe (IF=20.6)上的题为Multi-cohort analysis reveals colorectal cancer tumor location-associated fecal microbiota and their clinical impact的文章。
我们的口号是:读千篇文献, 科研路上不迷路。
我们的重点是:学习别人的实验思路和方法以及图片绘制!!!
研究背景
结直肠癌(CRC)是全球主要健康问题之一,也是癌症相关死亡的第二大原因。在CRC患者中,肿瘤可在结肠不同区域发展,且不同位置的肿瘤具有独特的组织学和分子特征。肿瘤位置是CRC预后、治疗有效性和转移的重要预测因素,例如,左侧或远端CRC患者的发病率和生存率通常高于右侧或近端CRC患者。这些发现凸显了肿瘤位置对CRC治疗效果和结局的重要影响。此外,人体肠道微生物群与CRC密切相关,众多研究已探讨其对CRC治疗效果和预后的影响。然而,目前缺乏针对CRC不同肿瘤位置的微生物群研究。尽管已有研究描述了左侧(lCRC)或右侧CRC(rCRC)的微生物群组成,但这些研究大多基于单一队列的黏膜样本,存在样本量有限和测序分辨率低的问题。
核心问题
不同部位结直肠癌(CRC)肿瘤与肠道菌群的关系尚不清晰,尤其是右侧结肠癌(rCRC)、左侧结肠癌(lCRC)和直肠癌(RC)在微生物组成上的差异。
肿瘤位置相关的肠道菌群对患者预后的影响机制缺乏系统研究,目前尚不清楚不同位置癌症相关菌群如何影响生存结局。
现有结直肠癌微生物诊断标志物忽略了肿瘤部位差异,导致诊断准确性不足,缺乏针对不同肿瘤位置优化的微生物诊断方案。
研究目的和创新点
研究目的
1. 系统分析不同肿瘤部位(rCRC、lCRC、RC)粪便微生物组成变化规律,明确不同位置CRC相关菌群特征。
2. 探索肿瘤部位相关菌群与患者生存预后的关系,评估菌群变化是否具有预后价值。
3. 构建基于肿瘤位置的微生物诊断标志物模型,提升结直肠癌不同部位早期无创筛查和诊断能力。
创新点
首个多队列、多中心、基于1375例粪便宏基因组数据的系统性分析:覆盖六个独立队列,样本量大,代表性强。
首次确定多种肿瘤位置特异性菌群:如 Veillonella parvula(rCRC)、Streptococcus anginosus(lCRC)和 Peptostreptococcus anaerobius(RC),并发现 Fusobacterium nucleatum 各部位普遍富集。
开发位置专属微生物诊断模型:AUC值均超90%,显著优于不区分部位的单一诊断方法,为临床提供部位精准化筛查依据。
研究方法和实验设计
1、多中心、多队列粪便宏基因组测序分析
收集并整合六个队列共1375例粪便样本(包括rCRC、lCRC、RC患者及健康对照),统一宏基因组测序和生物信息学分析流程。
2、群落结构与功能分析
采用α多样性、β多样性、差异菌种筛选、线性判别分析(LEfSe)和相关性网络分析,解析肠道菌群在不同肿瘤位置间的组成及功能差异。
3、诊断模型构建与验证
基于随机森林算法,分别为rCRC、lCRC和RC开发专属微生物诊断模型,采用训练集和独立验证集评估模型性能(AUC值),并与现有无区分方法对比。
结果
01
不同结直肠癌肿瘤位置与肠道微生物及预后的关联图1 研究示意图
图源Cell Host & Microbe 33, 589-601 (2025).
图1通过多中心大样本队列和严格入组标准,系统评估了不同结直肠癌肿瘤位置与肠道微生物及预后的关联,排除了主要混杂因素影响。
数据来源与入组标准:
为了研究不同结直肠癌(CRC)肿瘤位置相关的肠道微生物群,本研究招募了来自香港(n = 584)和云南(n = 520)的两个内部粪便宏基因组队列,并整合了四项已发表研究中的数据(n = 1953)。入组标准严格,仅纳入具有明确肿瘤位置和AJCC TNM分期信息的CRC患者,排除了腺瘤、多灶性CRC、并发胃肠道疾病或既往胃肠手术史的病例。最终共纳入1375名个体,包括128名rCRC、168名lCRC、250名RC患者及829名健康对照。
患者特征与生存差异:
尽管不同队列存在地域和种族差异,但所有队列中远端CRC(lCRC与RC)患病率始终高于近端CRC(rCRC)。在各肿瘤位置的CRC患者中,年龄、性别、BMI和AJCC分期无显著差异,排除了这些混杂因素的干扰。同时,结果与以往研究一致,不同肿瘤位置的患者生存率存在显著差异,其中RC患者预后最好,rCRC患者生存率最低。
02
肿瘤部位相关的粪便微生态演变及预后关联
图2 近端到远端结直肠癌的肠道微生物群逐渐发生变化
图源Cell Host & Microbe 33, 589-601 (2025).
图2揭示了结直肠癌从近端到远端肿瘤位置伴随粪便微生物群α多样性、群落结构和菌群失调指数的逐渐变化特征,并证实菌群失调指数与患者预后密切相关。
α多样性与群落结构差异:
在CRC患者中,不同肿瘤位置的粪便微生物群与健康对照组比较发现,仅rCRC患者的微生物α多样性(Chao1指数)显著低于对照组(p < 0.05)。从rCRC、lCRC到RC,α多样性逐渐增加。主坐标分析进一步证实,不同肿瘤位置的粪便微生物群存在显著差异,且微生物群组成从近端到远端结直肠癌呈现连续性变化趋势,与健康对照逐渐分离。
主要菌群构成与失调指数变化:
在门水平上,结直肠癌患者粪便微生物群主要由厚壁菌门和拟杆菌门构成,其次为变形菌门、放线菌门和疣微菌门。随着肿瘤位置从rCRC、lCRC到RC,厚壁菌门丰度逐渐增加,而拟杆菌门丰度逐渐下降。菌群失调指数(厚壁菌门/拟杆菌门)从rCRC、lCRC、RC到健康对照也表现出递增趋势,高菌群失调指数与CRC患者更好的生存预后显著相关(p < 0.05)。
03
结直肠癌不同肿瘤位置相关菌群的种类组成与位置特异性分布研究
图3 确定与CRC肿瘤位置相关的粪便微生物种类
图源Cell Host & Microbe 33, 589-601 (2025).
图3揭示了结直肠癌不同肿瘤位置相关差异菌群的种类组成、重叠关系及位置特异性分布,为理解CRC微生态异质性奠定了基础。
差异菌群种类与位置分布规律:
研究通过差异分析,系统鉴定了与不同结直肠癌肿瘤位置相关的粪便微生物。与健康对照相比,rCRC中识别出69种差异细菌(40种富集,29种减少),lCRC中87种(66种富集,21种减少),RC中37种(18种富集,19种减少)。这些差异菌群分为两类:一类是在多个肿瘤位置均显著变化的细菌,另一类则为仅在单一位置显著差异的“位置特异性”细菌。
重叠菌群与位置特异性菌群特征:
结果发现,共有18种细菌在所有三个肿瘤位置与对照组间均显著变化,包括已报道的CRC相关病原体(如梭杆菌、胃梭菌、微小梭菌),且在lCRC患者中丰度最高。此外,rCRC与lCRC间存在15种重叠差异菌群,rCRC与RC间5种,lCRC与RC间5种。针对位置特异性菌群,rCRC中独有31种,lCRC独有49种,RC独有9种,其中包含多种已知与CRC相关的典型致病菌。
04
差异菌群与肿瘤位置及预后的关系及其稳定性分析
图4 粪便微生物种类与不同肿瘤位置的CRC患者的预后相关
图源Cell Host & Microbe 33, 589-601 (2025).
图4证实差异菌群与肿瘤位置及预后的紧密关系,且其结果稳定可靠,未受队列异质性与统计方法变动干扰。
差异菌群稳定性验证与统计方法一致性:
为了排除队列异质性及潜在混杂因素(如年龄、性别、BMI、地理区域)对差异菌群分析的干扰,研究应用了MMUPHin和ConQuR两种批次效应校正方法。结果显示,关键差异细菌(如F. nucleatum、P. micra 和 P. stomatis)在校正后仍保持显著变化。此外,采用ALDEx2、ANCOM-BC2和NetMoss2三种统计方法复核差异分析,结果与原始Wilcoxon秩和检验高度一致,表明所鉴定差异微生物具有稳定性,不受统计策略影响。
差异菌群与预后关联分析:
进一步评估差异菌群丰度与患者生存率的关系发现,在rCRC患者中,7种富集于rCRC(如B. caccae、V. parvula 和 B. fragilis)的菌群丰度升高显著关联于较差预后。在lCRC患者中,3种富集菌(V. coprocola、F. bacterium CAG:83 和 C. hongkongensis)与较差预后相关;而在RC患者中,1种富集菌(F. bacterium CAG:114)也显著预示较差生存结局。
05
rCRC患者粪便微生物群互作网络复杂度及肠道菌群紊乱分析
图5 确定CRC肿瘤位置相关的粪便微生物相关性
图源Cell Host & Microbe 33, 589-601 (2025).
图5揭示rCRC患者粪便微生物群的互作网络复杂度高于其他肿瘤位置,提示其肠道菌群紊乱程度最显著。
不同肿瘤位置微生物相关性差异:
研究发现,结直肠癌患者中,微生物之间的显著相关性数量从rCRC、lCRC到RC逐渐增加。在去除弱相关性(rho绝对值<0.25)及与健康对照组重叠的相关性后,rCRC中筛选出44种富集及17种减少的细菌,共构建出45个显著相关性的微生物网络,且多为负相关,提示rCRC富集与减少菌之间存在明显拮抗关系。
lCRC与RC微生物互作网络特征:
在lCRC患者中,检测到23种差异粪便细菌(16种富集,7种减少)及16个显著相关性,形成相对较简单的菌群互作网络。相比之下,RC患者中构建出由26种富集菌和8种减少菌组成的25个显著相关性网络。整体来看,rCRC的微生物互作网络关联数量最多,特征最复杂,表明其肠道微生物群结构与健康人差异最大
06
不同肿瘤位置特异性粪便细菌标志物及结直肠癌无创诊断模型
图6 位置特异性的粪便细菌生物标志物可准确诊断具有不同肿瘤位置的CRC
图源Cell Host & Microbe 33, 589-601 (2025).
图6整合不同肿瘤位置特异性粪便细菌生物标志物,有助于建立具备广泛适用性和高准确度的结直肠癌无创诊断模型。
不同肿瘤位置生物标志物的筛选与诊断性能:
研究基于5折交叉验证的随机森林模型,筛选出可区分不同CRC肿瘤位置与健康对照的微生物生物标志物。rCRC诊断模型包含8种粪便细菌(6种富集,2种减少),lCRC模型包含11种(10种富集,1种减少),RC模型包含12种富集菌(图6A)。rCRC特异性面板区分rCRC与对照的AUC达91.59%,但在识别lCRC或RC时表现较差。lCRC和RC面板亦表现出在对应位置较高、跨位置较低的诊断能力(图6B)。
3Region-CRC综合模型的构建与验证:
进一步整合不同肿瘤位置的特异性生物标志物,构建“3Region-CRC”模型,包含20种粪便细菌(17种富集,3种减少)。该模型在区分所有CRC患者与对照中AUC达91.38%(图6C),并在STST和LODO交叉验证中表现稳定,平均AUC分别为83.39%和85.69%(图6D)。与临床常用FIT相比,3Region-CRC模型诊断准确性显著更高(AUC=83.91%,p<0.01)(图6C)。
结论
肿瘤部位驱动的微生物结构梯度变化
多队列分析结果显示,结直肠癌从近端至远端微生态组成呈渐进式变化趋势,具体表现为厚壁菌门自rCRC至lCRC再到RC逐步升高,而拟杆菌门则逐渐减少。
部位特异性CRC相关粪便细菌鉴定
研究鉴定出多种与不同结直肠癌位置相关的粪便细菌,包括rCRC富集的小韦荣菌、lCRC的血管链球菌以及RC中的厌氧消化链球菌,此外,有核梭杆菌在全部肿瘤部位均显著上升。
与预后相关的肿瘤位置依赖性微生物特征
结果揭示,若干与肿瘤部位相关的差异粪便细菌与CRC患者生存结局密切相关,强调在筛选粪便微生物诊断标志物时,应充分考虑不同肿瘤位置的微生物特性差异。
参考文献
[1] Lin, YF., Lau, HCH., Liu, CF. et al. Multi-cohort analysis reveals colorectal cancer tumor location-associated fecal microbiota and their clinical impact. Cell Host Microbe 33, 589-601 (2025).
本文内容均为个人学习看法,如若侵权或异议,联系即删!
北大清华两博士联手,单细胞大牛汤富酬教授团队最新Science:单细胞长读长测序揭示小鼠胚胎染色质可及性图谱
首医大博士一作,张亚卓/李储忠团队Microbiome (IF=13.8):代谢组学揭示库欣病肠道菌群调控小鼠抑郁焦虑机制
浙江大学求是特聘教授王新霞团队最新Microbiome:短期和长期高脂饮食通过肠道菌群改变脂肪中的m6A甲基化,导致代谢紊乱!
8位博士、医生一作,北大张泽民院士与合作者Cell (IF=46.2):单细胞图谱揭示辅助治疗后非小细胞肺癌中的免疫异质性